
Information System Software Development
with Support for Application Traceability

Vojislav -Dukić1, Ivan Luković1, Matej Črepinšek2,
Tomaž Kosar2(B), and Marjan Mernik2

1 Faculty of Technical Sciences,University of Novi Sad,
Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia

{vdjukic,ivan}@uns.ac.rs
2 University of Maribor, Slomškov trg 15, 2000 Maribor, Slovenia

{matej.crepinsek,tomaz.kosar,marjan.mernik}@um.si

Abstract. Information systems are rapidly changing since new require-
ments are emerging frequently in business processes. When incorporating
changes in the system you should not underestimate the usability and
personal satisfaction of the user. There are many variables that influence
the success of evolving an information system from the user’s viewpoint.
In this paper we outline the problem of information system traceabil-
ity, the ability of users to verify the history of information system and
with that a possibility to check the differences between information sys-
tem’s versions. Unfortunately, most of the systems support traceability
only at the level of the document. The novel approach presented in this
paper is integrated within WISL, using our information system genera-
tor, and supports versioning control inside information systems. WISL
introduces application traceability at the level of information systems’
domain concepts which deliver versioning information to the users in a
seamless manner.

Keywords: Program versioning · Information systems · Dynamic
graphical user interfaces · Human-computer interaction · Domain-
specific modeling · Domain-specific languages

1 Introduction

Software engineers are constantly dealing with new requirements and extending
Information Systems (ISs). Usually, the success of an extension is recognized
by the proper functioning and efficiency of the IS. Rarely is the success factor
related to usability and the personal satisfaction of the users. The latter are often
forced to unconditionally adopt the changes introduced in the ISs. Activities that
would ease the transition between two versions of the same software are often
not supported. The above-mentioned problems are topics of research within field
of human-computer interaction (HCI) more specifically as an interaction design
discipline, which focuses on how to design computer software so that it is as
simple, intuitive, and comfortable to use as possible [1]. In this paper we suggest
c© Springer International Publishing Switzerland 2015
P. Abrahamsson et al. (Eds.): PROFES 2015, LNCS 9459, pp. 513–527, 2015.
DOI: 10.1007/978-3-319-26844-6 38



514 V. -Dukić et al.

improving the user’s usability with a software development approach often used
in model-driven architecture [2], a domain-specific language (DSL) [3].

In rapidly changing systems there are many variables that influence the suc-
cess of IS development from the viewpoint of user’s efficiency. We will outline
traceability. An example of a successful implementation at the level of source
code traceability is the Git versioning system [4]. Unfortunately, it only enables
traceability at the level of the text, rather than on the level of IS domain
concepts.

The idea of traceability in ISs is not new [5] but is rarely being implemented
since it takes precious resources. We can find examples of such functionality
within some development frameworks but it is usually limited to changes inside
the log file, the source code with its comments, and the updated documentation
that is not linked to the context of history. Such documentation is often a good
support for a software developer but unfortunately not available to the user to
understand the evolution of IS, evaluating/determining the price of changes for
a customer, finding potential security holes for the security engineer, etc.

In order to overcome some of these problems, we have designed a tool WISL
(Web Information System Language)1 that is based on the centralized integra-
tion of changes at the level of domain concepts. In view of that, the feature
of traceability is available throughout the whole process that includes docu-
mentation, metamodel, source code, user interface, and history-enriched user
documentation.

In order to support users with the capabilities of tracing the IS versions and
their functionality changes, we use DSL [6]. DSLs have become an important
Software Engineering (SE) field and one of the vital elements of several software
development methodologies, like Model-Driven Engineering (MDE) [7], Software
Factories [8], etc. In this paper we first used the power of DSLs to generate
an arbitrary IS. In this manner the software engineer can describe any IS with
writing specification in WISL. The novel approach that we present in this paper,
is the extension of this DSL to support version control inside IS similar to the
Git versioning system. We believe that such interaction design of IS improves
the user’s perception on changes introduced in evolved IS.

The organization of the paper is as follows. Motivation is discussed in Sect. 2.
The general overview of the WISL framework is given in Sect. 3. The language
behind the WISL framework is presented in Sect. 4. An extension of the lan-
guage from Sect. 4 that enables the construction of system traceability is given in
Sect. 5. Finally, concluding remarks with future work are summarized in Sect. 6.

2 Motivation

Each approach to software development has its advantages and disadvantages.
The design of our approach is based on the actual needs of the industry on the
one hand and our expert knowledge on the other. The environment where we
1 The project source is available at: https://bitbucket.org/work91/wis.

https://bitbucket.org/work91/wis


IS Software Development with Support for Application Traceability 515

operate an economy is changing rapidly. Economy is changing enterprises from
large to small and micro. Budgets for information technology are getting smaller,
although there is a growing demand for ISs. Economy also changes the dynamics
of the IS life-cycle. The frequencies of IS changes are increasing constantly. In
practice, we meet the requirements, which are expected to change the IS not in
a few days or weeks but within a few hours. The expectations of customer are
often unrealistic and do not foresee the consequences they bring.

IS software development is becoming similar to the software prototyping in
many aspect. In order to support our needs, the IS development framework needs
to meet the following requirements:

– A high level of interactive integration of the customer, the developer, and the
user.

– Support of traceability not only for the developer but also for the customer
and the user.

– Support for the incremental development of domain specific concepts.
– Support for rapid implementation.

Customer and user are often the same person (Fig. 1) but this is not essential.
In a simplified scenario, the customer is the one who is ultimately responsible for
paying for the IS changes. Supporting aspects of billing system is very important,
because requirements can grow out of proportion very quickly. The user is one
who usually interacts with the IS user interface. However, the developer is usually
the software engineer who adopts and implements a customer’s requirements.

The described procedure is similar to the well-known issue-tracking systems
[9], where the subscriber or user opens a new ticket to which developer responds

Fig. 1. Outline of WISL with traceability support



516 V. -Dukić et al.

with a change in the IS or just a simple reply. Support of traceability is taking
care of by including the ticket identifier in all documents of IS. The identifier of
changes can be found in the description of the changes, over the source code to
the user interface forms, or even reports.

In regard to the efficiency and transparency of incremental developing it is
necessary to support the history of changes at the level of the domain concepts
of IS not just at the level of text. Using such support IS can be returned to the
previous version, review changes over time and link requirements not only on the
level of specification but also at the level of graphical interface, database and
associated documentation. These requirements of rapid development we have
achieved with WISL by using a code generation, and concepts of DSL.

3 System Architecture

WISL is designed to be a comprehensive way of describing an IS in general (see
Fig. 2). It combines the basic concepts from the entity-relationship model (ER
model) but also includes some technical details about the end-system implemen-
tation. Comparing abstraction levels, WISL stays between ER and the relational
data model. After creating the system description (“WISL Model” from Fig. 2),
we have provided a process (see “IS Generation”) for automatically generating
a functional prototype (“IS Prototype” in Fig. 2). First of all, we used XText
to implement WISL language and an editor as a plug-in for Eclipse IDE. Using
the same tool we have defined a model to model transformation from WISL
description to the WISL object model. The object model has been built within
the Eclipse Modeling Framework (EMF) [10]. We used XTend to write code
templates from the object model. Since we opted for Web-based applications,
we have implemented two highly independent generator categories for the client
and server sides of the application. WISL end application is built-up using some
of the more widely used software frameworks mixed with our own extensions in
order to support system extensibility. On the server side we used Spring Frame-
work and Hibernate [11,12] together with a WISL data framework, in order to
overcome problems with bidirectional relationships within the Hibernate frame-
work. We have generated a JPA [12] data model, Spring repositories and Spring
REST Controllers [11] from the WISL object model. On the client side we have
implemented a highly decoupled Single Page Application (SPA) using the Angu-
larJS framework [13]. In addition, we have provided the WISL with a dynamic
user interface framework. In order to support the client side of the application,
we have generated Angular routers, services, and menus but also WISL dynamic
UI descriptions.

It is very important to mention some of the techniques for integrating a
generated code with a hand written code. We are aware that WISL can build
functional applications but it is not capable of satisfying all customer needs
in commercial projects. On the server side we have relied on the options of the
Spring Framework. Using configuration files it was possible to exclude some parts
of the generated code or to include custom written code and combine it with



IS Software Development with Support for Application Traceability 517

Fig. 2. WISL system architecture

the generated one. On the other hand, the WISL UI framework enables simple
extensions of a client side application just by following the project structure.

3.1 WISL Backend Application

The WISL system follows the SPA architecture. It means that a server side does
not generate HTML code, as in traditional web applications. The main idea
is to write HTML templates that are going to be delivered to the client side
as a bundle together with Javascript code. By using the Javascript code, it is
possible to fill the templates with data retrieved by the server REST controllers.
A big advantage of this approach is that it allows browsers to cache a client-side
application. It leads to much more effective bandwidth usage and simpler server
side code.

In order to support SPA architecture, the WISL backend is a REST appli-
cation based on the Spring Framework (see Fig. 3). This framework has a well-
defined code structure that allows developers to modify or to easily add custom
code. What is more important, it separates the generated and custom code.
Newly generated code will not overwrite the hand-written parts and violate
a previous structure. On the other hand it is possible to use generated code
within other custom parts using the Spring framework features. By changing
the configuration files, a developer can substitute or exclude some parts of the
generated code.



518 V. -Dukić et al.

Fig. 3. WISL backend application

Fig. 4. WISL frontend application

The REST controllers by themselves are quite simple components that can
be easily generated from the WISL system description. A much more serious
problem is the data storage system. In order to achieve effective data persistence,
we have used Java Persistence API (JPA) and Hibernate (see Fig. 3, again). JPA
relies upon Java Database Connectivity (JDBC) drivers that allow usages of
many different Relational Database Management Systems (RDBMS).

3.2 WISL Frontend Application - WISL Dynamic UI Framework

The WISL Dynamic UI framework is the most important part of the WISL client
application (see Fig. 4). It is capable of generating the complete functional web
user interface just by using the WISL UI description model. The framework is
implemented as a group of AngularJS directives. They are independent compo-
nents that contain HTML templates as static view descriptions and Javascript
controllers that define the behavior of a component. We have implemented direc-
tives for the global entity view, detail entity view, entity create, entity update,
show entity relationship, and edit entity relationship. There is also a general
directive that encapsulate the previous ones. If a developer is satisfied with the
default functionalities it is enough to call a general directive for each entity.
Otherwise, it is possible to use only some of the directives or to write the entire
user interface from scratch. For example, write a completely new global entity
interface but after that just include buttons for entity editing.

Each of the UI directives is based on the WISL UI description model. It is
a description of the user interface on an abstract level. The description is in
the JSON format (see Fig. 5). The directives parse the description and use it to
generate different user interface components dynamically. It is also possible to
change this description during the run-time. The framework will recognize the
changes and will reorganize the user interface.



IS Software Development with Support for Application Traceability 519

Fig. 5. WISL UI description

The UI description provides technical details about UI components (e.g. type
of component - see that the component “name” is presented as a “text” type in
Fig. 5) and interfaces of Spring REST services on the server side of an application.
The description could be custom-written or generated from a WISL model. The
description in Fig. 5 corresponds to the WISL model described in the following
Sect. 4.

4 WISL IS Definition

As was mentioned previously, WISL is a solution for a comprehensive descrip-
tion of IS. The WISL abstract syntax (metamodel [14]) has been created using
ECore and EMF (see Fig. 6). The concrete syntax is textual and is implemented
in XText. The WISL metamodel shares some of the basic concepts with the
ER data model. As in ER, WISL contains entities (WEntity in Fig. 6) and rela-
tionships (WConnection in Fig. 6) with slightly different properties. Each entity,
except its own name, contains zero or more attributes similar to ER. However,
the attributes (WAttributs in Fig. 6) are much different. They play an important
role for the most part in end-system generation. Hence, at the attribute level it is
possible to configure name, type, label, validation rules, and much more proper-
ties which can affect the user interface and user experience. WISL also provides
the possibility for defining a new enumeration type together with suitable UI
component and validation rules and then assign it as a type to some attribute.
The other very important concept is the link. The link can be defined between
two and only two entities. Each side of the link has minimal (zero or one) and
maximal cardinality (one or many). Unlike in the ER, n-ary relationships and
categorization are not supported. Also, it is not possible to bind attributes to a
relationship. If the concept of a gerund is not directly supported then it should



520 V. -Dukić et al.

Fig. 6. WISL metamodel

Fig. 7. Employee salary ER diagram

be implemented as a new entity. Also, the solution is the same for relationships
with attributes. The inheritance is supported in the WISL metamodel but it is
not implemented in the end system due to technical reasons. In addition to the
mentioned concepts, WISL extends the existing ER data model with a concept
of package (WPackage in Fig. 6). By using packages, the user is able to build a
system as a hierarchical structure.

4.1 WISL Use-Case Scenario

As an example of WISL application we can consider a very basic use case - man-
ager attaching employees to different projects. Each employee is described by the
following attributes: first name, last name, wage, additional income, date of birth
and gender. A project is defined with the name, and purchaser. A corresponding
ER schema to this scenario is the one shown in Fig. 7.

The same semantic as described in WISL language is in Fig. 8. Note that
entities and links are defined separately within individual blocks of code. Each
link has a name (e.g. projectManager) and two related entities - the first entity
(construct “from”) and second entity (construct “to”). It is necessary to assign



IS Software Development with Support for Application Traceability 521

Fig. 8. Employee salary system in WISL

a role name for each entity (e.g. from employee as projectManager). This is
particularly important in case of a recursive relationship.

Entities in the WISL can have type, length, placeholder and many other
properties. Each of these properties has a default value. Note the difference
between attributes “firstName” and “additionalIncome” (see Fig. 8). Using the
default values wherever possible, we have tried to decrease learning time for the
system developer.

4.2 IS Generation

The WISL is capable of generating fully functional prototypes. The generated
system supports basic CRUD operations (create, read, update and delete) [11]
for each defined entity and relationship. An entity has two views - a global and a
detailed view (see Fig. 9). The global view shows only the important attributes
- attributes that are marked as important in a model. This concept of a way
to narrowing entities with a very extensive number of attributes. It makes user
interface much clearer. Search queries are only possible regarding important
attributes (by default).

In order to make the user more comfortable, the WISL provides a global
search, entity pagination and sorting. These operations are usually very time-
consuming for implementation, but they are an infallible part of every modern IS.

Each time a developer changes a WISL model, it is necessary to generate
a system again. If a custom code is written properly, the process of generation
will not violate a project’s structure and functionalities. In regard to the simple
example from Sect. 4 (employee <-> project), the generation process lasts only
a few seconds and creates 17 files with 973 lines of code.



522 V. -Dukić et al.

Fig. 9. Generated system - global view (upper part) and detail view (lower part)

5 IS History Support

In the previous Sects. 3 and 4 we introduced the WISL system, which is able to
generate arbitrary IS. However, the original architecture does not have any kind
of support for traceability. The implementations of these WISL functionalities
are presented in the following section where advice is given on how we extended
the metamodel behind WISL. The outcome of this extension is IS with integrated
versioning support on the levels of domain concepts.

An IS model can be viewed as a state of a metamodel. Making changes to
the model has similar properties as modifying the state (data) within database.
Any change must be atomic, consistent, isolated and durable. In order to change
the model we used the operations of deletion and insertion. While the concept
of update is interpreted as a combination of deletion and insertion.

Each operation has parameters that describe the domain concept. So you
could say that the version of the model changes after each operation but such
an interpretation could lead to inconsistencies of the model. Therefore a set of
operations is carried out during a transaction. All changes within a transaction
are identified with the same id version. Update of the concept in a model is
always performed as a transaction.

In order to support the suggested approach, we needed a relatively small
change of the metamodel (see Fig. 10). All we had to do was to expand the



IS Software Development with Support for Application Traceability 523

Fig. 10. WISL metamodel with history support included

metamodel with WChange and WChanges classes, where WChange includes the
concept updates and WChanges is just a container for changes (Fig. 10). In order
to achieve transparency of the changes arguments are introduced for the user
(message), developer (messageDev), identifier changes, and the like.

Changing the metamodel has two aspect. The first aspect is changing the user
interface and second is changing tts IS data. In order to achieve full history back-
tracking, data transformation needed to be provided (for example transforming
integer to real data type). Modifications that need complex transformations will
be the subject of future work.

5.1 Example

Imagine a real case-scenario which extends the IS defined with specifications from
Fig. 8. In this scenario we would like to insert new attributes (e.g. “wage”, “date
of birth”) and delete some attributes (e.g. “address”) inside entity “employee”.
Note, that we would like that WISL automatically inserts/deletes concepts in
the user interface, insert new entities in the database, etc.

Normally, one would insert just the attribute inside the specifications in
Fig. 8. In this way the system would be fully functional but the history of the
changes would be absent. Using the extension that corresponds to the new meta-
model (see the concept WChange in Fig. 10, again) we are able for instance, to
insert attribute “wage” in a way that will support traceability for the devel-
oped IS.

The concept “history” in Fig. 11 contains several block sections that corre-
spond to individual change in the IS. Each block contains the same attributes.



524 V. -Dukić et al.

Fig. 11. Traceability specification in WISL

Fig. 12. History aware specifications



IS Software Development with Support for Application Traceability 525

In our case-scenario attribute “ticketID” is set to value “3”, which means that
this change has been done for user request id “3”. Attribute “message” contains
the message that will be presented in user interface beside the concept that is
going to change. Our system also supports messages that can be seen only by a
software developer (attribute “messageDev”). The next attribute that needs to
be set in history is the name of the concept that is going to change (attribute
“path”). Here, the full path is expected - package name, entity name and finally,
the name of the attribute. Next attribute is “type”, the value of which represents
the operation of the change in IS. The last attribute is “elementType” which
contains the information about the changing concept. Note, that deleting the
concept is very similar to inserting a new concept, the only difference is in the
value of the attribute “type” (see the second block inside the history in Fig. 12).

After generating a new version of IS, the user interface has been changed (see
Fig. 13). The deleted fields are marked with red rectangles and new ones with
green. For every changed field you can get additional information in the form of
the hint (black bar with text).

Fig. 13. Interface and help changes in IS (Color figure online)



526 V. -Dukić et al.

5.2 Discussion

IS history support in WISL has been shown on a very simple use-case scenario
where text fields have been added/deleted from our IS in previous subsection
(see Fig. 13, again). The difference of the last two instances of IS is shown in
this figure. But the essence and the real power is hidden behind this figure and
WISL implementation. The user can always select two arbitrary versions of IS
and check the differences between them. Imagine a real-case scenario where user
might miss several versions of the IS. IS developed with WISL has a support
for such user which can check the differences between the current and a specific
version of the IS. Note that this is supported with keeping information of IS
instances in our modified WISL metamodel (see Fig. 10, again).

Of course, the history-aware view in the IS is optional. User that understands
the newly introduced changes in IS can easily turn off support for traceability.
An interesting research question would be how long to show new changes visible
to the user and when to automatically hide traceability support.

6 Conclusion

The importance of usability and efficiency for IS users should not be under-
estimated [15]. To conclude, we may say that the issue of perceiving software
modifications by software users and how those modification influence human
work and activities is a large and complex problem. WISL, our IS generator, is
an attempt towards developing software with changeability awareness. In order
to visualize changes in the IS, we have incorporated into WISL an extension,
which in a seamless manner supports users with additional information about
the changes in IS. The idea is somehow similar to versioning control systems,
where we can trace the differences between two versions of text file. In WISL,
this idea is incorporated on a level of domain concepts included in an IS. As
future work of the current implementation, we plan to prepare several use-case
scenarios and test WISL with different usability measurement models [16], to
see how our framework affects the user’s usability and efficiency. We also plan
to extend WISL with automatically generated history-sensitive documentation
that would facilitate users’ understanding of the changes in ISs. The next desired
feature for WISL is support for history management - traceability of the changes
throughout history is currently still a plan for our future work.

Acknowledgments. Research presented in this paper was supported by Ministry of
Education, Science and Technological Development of the Republic of Serbia, Grant
III-44010, as well as the Project of Bilateral Cooperation of the Republic of Serbia and
the Republic of Slovenia, Grant BI-RS/14-15-034.

References

1. Preece, J., Sharp, H., Rogers, Y.: Interaction Design-Beyond Human-Computer
Interaction. Wiley, New York (2015)



IS Software Development with Support for Application Traceability 527

2. Abrahão, S., Iborra, E., Vanderdonckt, J.: Usability evaluation of user interfaces
generated with a model-driven architecture tool. Maturing Usability: uality in
Software, Interaction and Value. Human-Computer Interaction Series, pp. 3–32.
Springer, London (2008)

3. Mernik, M., Heering, J., Sloane, A.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

4. Lawrance, J., Jung, S.: Git on the cloud. J. Comput. Sci. Coll. 28(6), 14–15 (2013)
5. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design trace-

ability and reasoning. J. Syst. Softw. 80(6), 918–934 (2007)
6. Kosar, T.: Mart́ınez López, P.E., Barrientos, P.A., Mernik, M.: A preliminary study

on various implementation approaches of domain-specific language. Inf. Softw.
Technol. 50(5), 390–405 (2008)

7. Stahl, T., Völter, M.: Model-Driven Software Development. Wiley, New York
(2006)

8. Greenfield, J., Short, K.: Software Factories: Assembling Applications with Pat-
terns, Models, Frameworks, and Tools. Wiley, New York (2004)

9. Aggarwal, A., Waghmare, G., Sureka, A.: Mining issue tracking systems using topic
models for trend analysis, corpus exploration, and understanding evolution. In:
Proceedings of the 3rd International Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering, RAISE 2014, pp. 52–58, New York, NY, USA.
ACM (2014)

10. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley, Boston (2008)

11. De, A.: Spring, Hibernate, Data Modeling, REST and TDD: Agile Java Design
andDevelopment. CreateSpace Independent Publishing Platform (2014)

12. Bauer, C., King, G.: Java Persistance with Hibernate. Dreamtech Press, New Delhi
(2006)

13. Freeman, A.: Putting AngularJS in Context. Apress, Berkeley (2014)
14. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation.

IEEE Softw. 20(5), 36–41 (2003)
15. Hering, D., Schwartz, T., Boden, A., Wulf, V.: Integrating usability-engineering

into the software developing processes of sme: a case study of software developing
sme in Germany. In: Proceedings of the Eighth International Workshop on Coop-
erative and Human Aspects of Software Engineering, CHASE 2015, pp. 121–122.
IEEE Press (2015)

16. Shawgi, E., Noureldien, A.: Usability measurement model (umm): a new model for
measuring websites usability. Int. J. Inf. Sci. 5(1), 5–13 (2015)


	Information System Software Development with Support for Application Traceability
	1 Introduction
	2 Motivation
	3 System Architecture
	3.1 WISL Backend Application
	3.2 WISL Frontend Application - WISL Dynamic UI Framework

	4 WISL IS Definition
	4.1 WISL Use-Case Scenario
	4.2 IS Generation

	5 IS History Support
	5.1 Example
	5.2 Discussion

	6 Conclusion
	References


