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ABSTRACT

Data center networks are at the heart of cloud infrastructure. They allow
cloud workloads to scale, be flexible, and meet the needs of modern businesses.
Since the demand for higher bandwidth, lower latency, and minimal resource
cost, is growing, cloud providers must continuously improve the efficiency
of their infrastructure. The key to achieving optimal performance of data
center networks is to understand the communication needs and behavior of
modern cloud workloads.

Intuitively, as cloud operators collect more knowledge about their tenants
and applications, i.e., obtain workload specifications like required bandwidth,
tail latency requirements, time to first byte, etc., they can use that knowledge
to precisely provision the physical network infrastructure and deploy sophis-
ticated control algorithms that maximize performance, increase utilization,
and reduce the cost of cloud resources. However, obtaining and leveraging
workload specifications is challenging in practice. On the one hand, users
do not have clear incentives in terms of performance and cost benefits to
invest the effort and help obtain the specifications of their workloads. On the
other hand, cloud operators cannot provide those benefits without having
a substantial number of workload specifications. Thus, many proposed sys-
tems that depend on application-specific knowledge remain in the domain of
academic research, despite their significant performance advantages.

To break this vicious circle, we propose a set of methods, theoretical results,
and systems that enhance the process of obtaining and using workload speci-
fications in the data center network environment. Moreover, we demonstrate
how to explore and utilize the space of various workload specifications. We
start the exploration from coarse-grained insights from the past execution
of cloud workloads and demonstrate how they can be used to reduce the



cost of physical network infrastructure. Our system, Iris, leverages historical
knowledge to reduce the overall cost of one of the most expensive parts of
cloud networks – Data Center Interconnect (DCI) – by an order of magnitude
compared to equivalent workload-agnostic solutions.

Furthermore, we analyze how to obtain fine-grained workload specifications
that describe the future behavior of cloud applications and use them to
enhance network efficiency. Thanks to our system, Flux, we automatically
infer advance specifications using machine learning methods. Then, we show
how to leverage these specification estimates to deploy sophisticated network
control and scheduling mechanisms that achieve an order of magnitude
improvement in terms of flow completion time and queue occupancy compared
to the systems deployed in the cloud today.

Finally, we provide a set of rules and guidelines that cloud providers
need to satisfy in order to motivate tenants to collaborate in the process of
obtaining and utilizing workload specifications, and ultimately, make these
specification-dependant systems practical in the modern cloud environment.



ZUSAMMENFASSUNG

Rechenzentren bilden das Kernstück der Cloud-Infrastruktur. Sie ermöglichen
die Cloud-Workloads zu skalieren, flexibel zu sein und die Anforderungen
moderner Unternehmen zu erfüllen. Da die Nachfrage nach höherer Band-
breite, geringerer Latenz und minimalen Ressourcenkosten wächst, müssen
Cloud-Anbieter die Effizienz ihrer Infrastruktur kontinuierlich verbessern.
Der Schlüssel zur Erzielung einer optimalen Leistung von Rechenzentren be-
steht darin, die Kommunikationsanforderungen und das Verhalten moderner
Cloud-Workloads zu verstehen.

Wenn Cloud-Betreiber mehr Wissen über ihre Kunden und Anwendungen
sammeln, d.h. Workload-Spezifikationen erhalten, können sie dieses Wissen
intuitiv nutzen, um die physische Netzwerkinfrastruktur präzise bereitzustel-
len und ausgefeilte Steuerungsalgorithmen bereitzustellen, die die Leistung
maximieren, die Auslastung erhöhen und die Cloud-Kosten senken. In der
Praxis ist es jedoch eine Herausforderung, Spezifikationen für den Workload
zu erhalten und zu nutzen. Einerseits haben Kunden keine klaren Anreize
in Bezug auf Leistung und Kostenvorteile um den Aufwand rechtzufertigen
eine Spezifikation ihrer Workloads zu erstellen. Auf der anderen Seite können
Cloud-Betreiber diese Vorteile nicht bieten, ohne über eine erhebliche Anzahl
von Workload-Spezifikationen zu verfügen. Daher bleiben viele vorgeschlage-
ne Systeme, die von anwendungsspezifischem Wissen abhängen, trotz ihrer
erheblichen Leistungsvorteile im Bereich der akademischen Forschung.

Um dieses Zirkelverhalten zu durchbrechen, schlagen wir eine Reihe von
Methoden, theoretischen Ergebnissen und Systemen vor, die den Prozess
des Abrufs und der Verwendung von Workload-Spezifikationen in der Netz-
werkumgebung des Rechenzentrums verbessern. Darüber hinaus zeigen wir,
wie verschiedene Typen von Workload-Spezifikationen erkundet und genutzen



werden können. Wir beginnen die Untersuchung mit grobkörnigen Einsichten
über das Verhalten von Cloud Workload in der Vergangenheit an und zeigen,
wie sie verwendet werden können, um die Kosten der physischen Netzwerkin-
frastruktur zu senken. Unser System, Iris, nutzt historische Spezifikationen,
um die Gesamtkosten eines der teuersten Teile von Cloud-Netzwerken - Da-
ta Center Interconnect (DCI) - um eine Grössenordnung im Vergleich zu
äquivalenten spezifikationsunabhängigen Lösungen zu senken.

Darüber hinaus analysieren wir die Verwendung feinkörniger Workload-
Spezifikationen, die das zukünftige Verhalten von Cloud-Anwendungen be-
schreiben. Dank unseres Systems Flux erhalten wir automatisch Vorabspezi-
fikationen mit Methoden des maschinellen Lernens. Anschliessend zeigen wir,
wie diese Spezifikationsschätzungen genutzt werden können, um ausgefeilte
Netzwerksteuerungs- und Planungsmechanismen bereitzustellen, mit denen
sich die Ablaufzeit und die Warteschlangenbelegung im Vergleich zu den heute
in der Cloud bereitgestellten Systemen um eine Grössenordnung verbessern
lassen.

Schliesslich bieten wir eine Reihe von Regeln und Einschränkungen, die
Cloud-Anbieter erfüllen müssen, um Kunden zur Zusammenarbeit beim
Abrufen und Verwenden von Workload-Spezifikationen zu motivieren und
diese spezifikationsabhängigen Systeme letztendlich in der modernen Cloud-
Umgebung praktikabel zu machen.
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1
INTRODUCTION

Data center networks are at the core of modern cloud infrastructure. The
growing demand for more and faster data processing has pressured cloud
operators to continuously innovate and improve the performance of their net-
works. These efforts have resulted in advances in physical network equipment,
network control algorithms, and infrastructure management.

However, data center networks still struggle to meet the needs of modern
businesses. Existing and emerging applications like disaggregated cloud [1],
[2], autonomous driving [3], [4], cloud gaming [5]–[7], or virtual reality [8], [9],
all have bandwidth and latency requirements that cannot be fully satisfied
by today’s cloud networks.

Besides high performance, cloud providers must ensure the lowest possible
cost of their infrastructure. Competitive cloud computing market and user
needs force major cloud providers to invest in new technologies that lower the
cost of network hardware components, simplify network management, and
reduce network operating costs. Another factor that drastically increases the
communication cost is that cloud networks do not operate at the maximum
utilization. To support the congestion-free operation of the network, cloud
operators rarely stress their communication infrastructure beyond 50% of its
maximum capacity [10]–[12].

Providing high-performance, cheap, and reliable communication in the
modern cloud is still an open problem, and there is significant room for im-
provement. Making cheaper and faster hardware [13]–[15], optimizing network
topology [16]–[18], and improving routing and congestion avoidance [19]–[21],
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2 introduction

are all active research directions that try to meet the demanding communica-
tion requirements of modern cloud applications.

Although very different in implementation, many techniques for improving
the efficiency of cloud networks have something in common – implicitly
or explicitly, they rely on having knowledge about the workloads that are
running within data centers. Information about how much data applications
are going to send, where, and when, can help cloud operators specialize their
systems for particular application needs, and at the same time, precisely
provision network capacity, synchronize applications and network flows to
avoid congestion, or reconfigure the network to suit application needs.

Intuitively, we can assume that:

The more we specialize our data centers for their target workloads, the
higher their performance and efficiency will be.

Thesis goal: The main goal of this thesis is to explore how to specialize
physical data center network design as well as network control and scheduling
algorithms by leveraging knowledge about cloud applications. We are inter-
ested in obtaining more knowledge about cloud workloads, i.e., obtaining
workload specifications and characteristics, and using those specifications
to improve the efficiency of cloud network infrastructure. This entails an
exploration of what workload specifications exist, how to obtain them, and
how to exploit them in various aspects of data center network design.
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1.1 Cloud environment

The cloud environment allows cloud providers to have excellent visibility
into application behavior, learn about application needs, and deploy new
systems that leverage that knowledge to improve network efficiency. Cloud
infrastructure provides great flexibility and supports custom changes to
almost any part of the network stack, which is impossible in more constrained
networks like the Internet.

Making a global change on the Internet requires an agreement between
multiple organizations (Autonomous Systems) that constitute the network.
These organizations must agree on protocols, interfaces, and data transfer
cost. However, this is challenging in practice because the interests of these
organizations are often conflicting. Autonomous systems are driven by the
business needs of their owners, and in many cases influenced by the policies
of the local governments, which makes the process of deploying various types
of changes slow and impractical.

On the other hand, data center networks are ruled and operated by a single
organization. This allows cloud operators to have full visibility and control over
their infrastructure and eliminate many business-incentive-related challenges
that exist on the Internet. This centralized control and flexibility bring
freedom to develop and quickly deploy techniques that require sophisticated
changes at any point in the network stack.

Let us illustrate this contrast between the Internet and cloud networks
with an example. Traditionally, TCP uses packet loss as a signal for network
congestion. This approach is relatively simple because it does not require any
in-network hardware support. Instead, source/designation hosts can use a set
of timers and heuristics to detect packet loss. Although appealing because
of its implementation simplicity, this approach has a negative performance
impact – it takes too long to detect congestion. An old idea to mitigate this
problem is to equip switches with Explicit Congestion Notification (ECN)
capability so that they can immediately notify senders and receivers about
congestion within the network [22]. Although ECN has been standardized
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since 2001 [23] and requires only a tiny change to the network hardware, it is
not entirely supported on the Internet to this day [24].

What took decades to be implemented on the Internet requires months
within the cloud. Since a new transport protocol that was tailored for the
cloud, DCTCP [19], required ECN support, cloud providers were eager to
deploy suitable hardware configuration in all of their data centers immediately.
In return, DCTCP provided substantial improvements in performance thanks
to efficient congestion avoidance.

Having a flexible environment is only a precondition for achieving high net-
work efficiency. Next, we explore the opportunities to leverage that flexibility
to maximize network performance.

1.2 Making cloud networks more efficient

Building and operating cloud networks is expensive. They contribute to
around 15% of the total cost of cloud infrastructure [25], which, at the
current scale of cloud computing, translates to tens of billions of dollars that
ultimately cloud users need to cover. Furthermore, violations of the network
Service Level Agreement (SLA) due to poor performance and unreliable
hardware create a substantial expense both for cloud providers and cloud
users. It has been show that the increase in network latency [26], [27] and the
number of network outages [28], [29] do serious damage to modern businesses.

The factors and challenges that determine the performance and cost of the
data center networks are fundamentally not different from those that appear
in other types of networks, for instance: how to detect and handle partial and
complete hardware failures, how to pick the proper network topology, how
to balance the network traffic and choose the optimal route for each data
flow, or how to handle congestion when multiple flows collide on the same
path. Although all of those problems have solutions that operators developed
for other types of networks, their performance can be drastically improved
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within data centers because of the flexibility that the cloud environment
provides across the entire network stack.

At a high level, we can define two classes of techniques for building more
efficient networks.

• Improving the cost and performance of physical network infrastruc-
ture and devices used to build the network. Building the right physical
network topology to provide sufficient performance to various cloud
applications has a critical impact on the overall efficiency of cloud in-
frastructure. Besides performance, important factors to consider when
building a physical network are management complexity, network ex-
pandability, and component cost. Previous work has focused on various
static [16]–[18] and dynamic [30]–[33] topologies that try to strike the
right balance between cost, performance, and complexity.

Another approach to increasing physical infrastructure performance
is to rely on advancements in the domain of network hardware. New
achievements in the domain of optical transceivers [14], [34] and switch-
ing fabric [35], [36] make networks cheaper, faster, and more reliable.

• Improving data, control, and management plane algorithms on top of
physical infrastructure. Once the physical layer is established, there is
substantial room for improvement of performance and efficiency by using
smart traffic control algorithms. Full control over the network allows
cloud providers to deploy unconventional and sophisticated approaches
to congestion control, routing, packet forwarding and prioritization [19],
[37]–[39].

These techniques usually operate at much finer granularity compared
to physical layer optimizations. They focus on the needs of individual
applications and act at the level of network flows [40], flowlets [41], or
coflows [42], [43].

Note that many of these optimizations at both layers have something in
common – they are made possible by particular insights about application
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behavior. Knowing the application goals and how applications behave under
different circumstances can help us make smarter decisions about network
provisioning, routing, or traffic engineering. we call this knowledge about a
particular application workload specification.

Next, we describe the main characteristics of workload specifications and
how to deploy systems that leverage those specifications to improve network
efficiency in the modern cloud environment.

1.3 Workload specifications

Knowing how much traffic an application is going to send, when, and where,
i.e., having a network workload specification, allows cloud providers to apply
sophisticated optimization techniques to maximize performance and reduce
the cost. The more knowledge we obtain about the running workload, the
better we can integrate applications with the network infrastructure and
ultimately bring them closer to optimal performance.

For instance, knowing the size of each network flow can be used to prior-
itize latency-sensitive traffic over more robust background traffic [12], [44].
That same information is also helpful to perform bandwidth allocation and
altogether avoid the need for congestion control mechanisms [38], [45]. Fur-
ther, understanding at what point in time an application is going to use
the network is critical for dynamic networks that require reconfiguration
depending on the changing traffic patterns [30], [46], [47]. By having this time
information, dynamic networks can perform costly reconfiguration operations
in advance and reduce the impact on application performance.

1.3.1 Workload specification space

The requirements from workload specifications vastly vary depending on the
systems and processes that utilize them. For physical data center network
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design and provisioning, it is essential to have insights across many cloud
workloads over a long period of time. Information like average bandwidth
requirements, maximum aggregated traffic at any given time in the data center,
frequency of substantial traffic changes, or general application sensitivity
to increase in latency all have a massive impact on how we deploy physical
infrastructure in data centers.

These general statistics about workload behavior help design large-scale
general-purpose physical systems. However, making intelligent decisions about
controlling and managing physical infrastructure requires more detailed
workload characteristics as well as predicting future behavior of the workload.
For instance, knowing the bandwidth requirement for a particular application
in the future, who the application communicates with, and how sensitive
the application is to congestion significantly impacts how we do routing,
congestion control, load balancing, or prioritize network flows.

Based on these observations, we can define the space of all workload speci-
fications with two dimensions: granularity and time. Granularity determines
what part of an application (or set of applications) is described with a work-
load specification. Coarse-grained specifications describe the behavior of many
applications together. They aggregate information of thousands of programs
across the entire data center and provide insights like average or maximum
bandwidth requirements, distribution of network flow sizes, frequency of traf-
fic pattern changes. Further, specifications with finer granularity concentrate
on the behavior of a single application, while most fine-grained specifications
describe critical features of individual network flows or even isolated network
packets.

On the other hand, the time dimension ranges from historical insights
about past application behavior to providing estimates about future events.

Note that both time and granularity are not completely discrete dimensions.
Instead, there is a continuum of workload specifications. They range from
course-grained specifications that describe past behavior to those that provide
fine-grained insights into the future.
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1.3.2 Workload specification in the cloud environment

There are multiple challenges cloud providers need to address before they
deploy specification-dependent systems and optimizations within their infras-
tructure.

How to obtain workload specifications? One obvious approach would be to
ask cloud tenants to provide specifications for their applications to the cloud
explicitly. For example, the application could provide its specification to the
cloud through a predefined API call. Although appealing, this approach has
two significant flaws. First, today’s applications are not designed to under-
stand and express their specification automatically, which means that using
such API would require substantial manual changes to many applications.
Second, and even more important, cloud users often do not even understand
the requirements of their applications. Sometimes, it is just fundamentally
impossible to know the exact characteristics because the performance and
behavior depend on external factors that application owners do not control,
e.g., number of concurrent users on the website.

Obtaining workload specifications requires a lot of effort from both cloud
tenants and cloud operators. Thus, they have to work together towards
building new concepts, frameworks, and APIs that automatically capture
and describe application behavior. This thesis explores this challenge in the
context of cloud networks and proposes new approaches to obtaining workload
specifications (§4, §5).

How to design a system that leverages those specifications to improve ef-
ficiency? Typically, systems that rely on having workload specifications
require changes across multiple layers of the cloud stack. Besides obtaining
the specification, cloud providers have to decide how to store and utilize
them. Some systems are distributed and can utilize the specifications at
places where they are made (usually endhost machines) [37], while more
sophisticated scheduling and control algorithms require coordination and
collecting many specifications at a centralized location to process them [38].
As a result, these centralized approaches compile a list of actions that should
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be applied to improve performance and efficiency. These actions are then
distributed back to network switches, middleboxes, and end-host machines.
To close the feedback loop, many of these components must monitor the
effects of applied actions, which further increases the complexity of work-
load specification-based systems. In this thesis, we provide examples of such
systems in §5.

How to guarantee performance improvements? Note that due to fundamen-
tal limitations, specifications for some applications are not obtainable in
practice. Thus, cloud providers must support both workloads with known
and unknown specifications. This has important implications for deploying
specification-based control systems in the cloud environment. Since obtain-
ing and leveraging knowledge requires substantial effort from cloud tenants,
providers must make sure that moving a workload from unknown to known
category will be justified by significant performance improvement. However,
this is not easy to achieve for many systems and algorithms, as we will discuss
in this thesis (§6).

How to utilize a workload specification that is incorrect or imprecise? In many
situations, the workload specification cannot be provided accurately either
due to limitations of the workload, e.g., the workload depends on enduser
actions, or because operators use heuristics and machine learning techniques
to obtain the specification. Thus, specification-based control systems must
be robust and deploy mechanisms that estimate the accuracy of individual
specifications. On top of that, an additional challenge to those systems in
practice is malicious user behavior. Namely, cloud tenants can intentionally
provide wrong specifications or tweak their applications to gain certain
benefits in terms of performance or cost. For example, if short network
flows have higher priority, malicious tenants may report all their flows to
be short and gain a substantial performance boost. Thus, it is essential to
deploy defense mechanisms that will assure fairness and remove incentives
for misbehavior. We discuss these challenges in more details in §6.

Next, we describe how we explore the workload specification space and
answer these critical questions in the context of this thesis.
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Fig. 1.1: We explore workload specification space by designing and analyzing
two systems: Iris and Flux.

1.4 Contributions

This dissertation focuses on improving the efficiency of cloud networks by
building systems that rely on network-specific workload specifications. In
particular, we focus on answering three high-level research questions:

• How to obtain network-specific workload specification in the cloud envi-
ronment?

• How to create highly-efficient systems that leverage those specifications

• How to increase the use of workload specifications in today’s cloud?

We answer those three questions by creating systems and algorithms that
operate throughout the entire workload specification space: starting from
course-grained historical workload specifications to fine-grained application-
specific specifications that describe the future behavior of the workload. Also,
we contribute to both designing new physical infrastructure and improving
the efficiency of control algorithms on top of that infrastructure. Fig. 1.1
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visualizes our contribution in workload specification space. We navigate
through that space by designing and analyzing two systems.

First, we propose Iris [48]1, a novel all-optical network design that leverages
course-grained workload specifications aggregated over long periods of time
to improve the efficiency of data center networks. In particular, Iris makes
an observation about traffic stability between data centers thanks to historic
workload specifications. That insight then allowed us to leverage cheap,
high-switching-latency equipment to create a novel optical fiber-switching
network architecture. Our design lowers the cost of one of the most expensive
components of today’s data center network infrastructure - regional cloud
networks and Data Center Interconnect (DCI) infrastructure. Namely, the
cost of today’s DCI is so high that it forces cloud providers to compromise
on network latency and management flexibility in order to keep the cost
within reasonable bounds. However, Iris reduces the cost by 7× on average
compared to today’s solutions allowing cloud providers to design and build
a new generation of DCI that offers the best possible performance to cloud
applications.

Second, we present Flux [49], a system that operates at the other extreme
of the workload specification space. Flux automatically predicts fine-grained
workload specifications about future network-related behavior of individual
applications and uses them to improve network flow and coflow scheduling
efficiency. Predictions made by Flux allow deploying fine-grained bandwidth
allocation, avoiding congestion and enabling near-zero queuing to maximize
network utilization and minimize latency. Furthermore, the predictions also
allow smart packet prioritization that mitigates the head-of-line blocking
problem and improves the flow completion time by 11× compared to workload-
specification-agnostic systems. Flux achieves that while not requiring cloud
tenants to make any modifications of their applications. Also, Flux does
not have any access to the application source code or the client’s internal
infrastructure. Instead, it obtains advance knowledge by collecting resource

1 Results related to DCI design and Iris that are covered in this thesis are a result of
a collaboration with Microsoft Research Cambridge, and they were the subject of my
internship at the MSR Cambridge Lab.
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utilization statistics already available to cloud providers and applying machine
learning techniques to make predictions about future behavior.

As we will show, obtaining workload specifications requires substantial
effort from both cloud providers and/or cloud users. To make specification-
dependant systems practical, it is essential to create clear incentives for
everyone to invest time and effort into obtaining the best possible workload
specifications. Thus, as a part of this thesis, we analyzed and proposed a
set of techniques that formally guarantee that the system efficiency only
improves when more knowledge about workloads is added to the system. This
guarantee is critical for all systems that depend on application knowledge and
workload specifications. Suppose additional effort invested in obtaining that
knowledge could result in performance degradation. In that case, the systems
we proposed, together with other specification-dependent techniques, have
little chance to see widespread adoption in the modern cloud environment.

Here we provide a more detailed list of contributions of this dissertation:

• We propose Iris, an all-optical fiber-switching network architecture
that leverages historic workload specifications to lower the cost and
complexity of modern DCI design. We show that our architecture can
provide a factor of 7× cost savings compared to equivalent state-of-the-
art solutions while having minimal impact on latency, throughput, and
performance.

• We design Flux, a framework for estimating flow sizes in advance by
looking at the past resource utilization of the application, history of
communication, and system-level parameters.

• Obtaining workload specifications on time, with low latency, can be
critical for providing performance benefits. On the example of Flux , we
show how to achieve microsecond-scale latency in obtaining estimates
of future workload behavior using traditional hardware and hardware
accelerators.
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• We evaluate the utility of inferred (often imprecise) flow sizes across
multiple scheduling techniques, finding significant benefits compared to
today’s scheduling algorithms that not to leverage workload specifica-
tions, e.g., the improvement of 11× in terms of mean flow completion
time.

• We analyze systems and algorithms that operate in environments with
partially available workload specifications. We show that the impact
of increasing the amount of knowledge about workload behavior in
these systems does not always lead to performance improvements.
Surprisingly, sometimes more knowledge degrades performance.

• We prove that there is a class of scheduling algorithms that can formally
guarantee better performance given more knowledge about the system.
Besides this formal performance guarantee, we list other requirements
from the specification-dependant systems that need to be satisfied
before major cloud providers adopt and deploy them.

1.5 Dissertation outline

This dissertation is organized in 7 chapters.

• Chapter 2: Data Center Interconnect design - Before we present a system
that improves network efficiency by leveraging historical workload
specification, we have to provide sufficient background to the challenge
that system is solving. Thus, we introduce the problem of designing
Data Center Interconnect (DCI) infrastructure. We analyze the design
goals as well as the technological and operational constraints that
influence the process of building a DCI deployment. We show how the
design choices influence network latency, data center sitting flexibility,
implementation ease, and the overall infrastructure cost.

• Chapter 3: A new generation of DCI - in this chapter we present
Iris, a new all-optical fiber-switching approach to building physical
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DCI infrastructure that was enabled by insights made using historical
workload specification. We also present other DCI implementation
options based on electrical and wavelength switching. We evaluate their
key properties and comparing them to Iris.

• Chapter 4: Advance knowledge of flow sizes - moving up in the network
stack and specification granularity, instead of improving physical in-
frastructure, here we focus on approaches that improve the network
control logic by exploiting fine-grained workload specifications about
future program behavior.

• Chapter 5: Learning flow sizes - we describe Flux, a new machine
learning-based system for obtaining more knowledge about future net-
work demand of individual applications and evaluate how this informa-
tion can be used in existing and new scheduling algorithms to improve
network efficiency.

• Chapter 6: Workload specification in practice - we discuss constraints
that must be met before specification-dependent systems are deployed
in practice. For instance, somewhat counterintuitively, we show that
adding more knowledge about a particular system does not guarantee
higher efficiency of that systems. Instead, it can degrade system’s
performance. This property cloud completely discourage cloud providers
and users to invest effort into obtaining workload specifications. Thus,
we focus on a class of control algorithms that formally guarantee that
additional knowledge can only improve efficiency of the system.

• Chapter 7: Conclusion - we summarize the key results of this thesis
and provide directions for future research.



1.6 publications 15

1.6 Publications

Part of the work in this thesis has already been published and is listed here
for reference:

[1] V. Dukic, S. A. Jyothi, B. Karlas, M. Owaida, C. Zhang, and A.
Singla, “Is advance knowledge of flow sizes a plausible assumption?”,
in USENIX NSDI, 2019.

[2] V. Dukic, G. Khanna, C. Gkantsidis, T. Karagiannis, F. Parmigiani,
A. Singla, M. Filer, J. L. Cox, A. Ptasznik, N. Harland, W. Saunders,
and C. Belady, “Beyond the mega-data center: Networking multi-data
center regions”, in ACM SIGCOMM, 2020.

Throughput my doctoral studies I worked on other research topics that are
not directly covered in this thesis. That work has been published in the
following publications:

[3] V. Dukic and A. Singla, “Happiness index: Right-sizing the cloud’s
tenant-provider interface”, USENIX HotCloud, 2019.

[4] V. Dukic, R. Bruno, A. Singla, and G. Alonso, “Photons: Lambdas
on a diet”, ACM SoCC, 2020.





2
DATA CENTER INTERCONNECT
DES IGN

We start exploring the workload specification space by demonstrating how
insights obtained using coursed-grained historic workload specifications in-
fluence the design decisions in deploying one of the most expensive parts of
modern cloud networks - Data Center Interconnect.

To support the growing demand for cloud resources today, major cloud
providers must build multiple data centers (DCs) within a relatively small
metro area around large cities. Those data centers, typically less than 20 of
them, interconnected with a high-bandwidth, low-latency network comprise
a cloud region. This fast network that cloud providers build and operate to
support only their needs and workloads is called Data Center Interconnect
(DCI).

In this chapter, we first outline the design space of DCI topologies, ranging
from fully centralized ones with all DCs connected to one hub (in practice
two for reliability) to distributed ones that either eschew such hubs entirely or
reduce dependence on them by building closer or direct connectivity between
some subsets of DCs. We show that DCI design involves more nuance than
just the clichéd centralized-distributed dichotomy may suggest, fleshing out
its complexity by: (a) analyzing data from several of Microsoft Azure’s regions;
and (b) performing testbed experiments that demonstrate the physical-layer
constraints.

Our analysis shows that distributed topologies provide much lower DC-DC
latency than DC-hub-DC connectivity: compared to a centralized topology,

17
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latency reduces for at least 60% of DC-DC paths, and in more than 20% of
cases we analyzed, the latency is > 2× lower.

The latency advantage is of high and growing value. By looking at the
needs and specifications of today’s applications, we observe that customers
are increasingly asking for lower latency service level agreements. For instance,
latency-sensitive applications like synchronous replication are going main-
stream at the region level [50]. While the latency advantage of direct DC-DC
connectivity is unsurprising, we also show that distributed topologies increase
flexibility in choosing DC sites. In the analyzed regions, the area in which
new DCs could be located increases by 2-5× with distributed topologies.

Unfortunately, as they would be implemented today, with electrical packet
switching, distributed topologies perform poorly compared to centralized
approaches across two key metrics: cost and complexity. The centralized
approach is much more cost-effective, by as much as 7× in the settings
we studied, and is significantly easier to manage, requiring a much smaller
number of components. Thus, cloud providers need a distributed DCI network
design that can reduce the cost and complexity, i.e., the number of ports,
while not sacrificing any network performance.

This chapter focuses on providing background on DCI design and defining
constraints that play an essential role in the DCI design space. In the following
chapter (§3), we propose a concrete DCI architecture, Iris, that leverages
coarse-grained historic workload specifications and achieves low cost and
complexity.

Outline This chapter is organized as follows: in Section 2.1 we provide a short
history of cloud development that led to the need to build efficient DCI today.
Section 2.2 precisely defines the problem of DCI design and provides the
main insights from today’s cloud application specifications, while Section 2.3
lists operational and technology-rooted constraints that shape the final DCI
network design.
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2.1 Introduction to DCI design

Cloud computing’s growth has forced commensurate scaling of data center
(DC) infrastructure. Until recently, such scaling meant building “mega”-DCs
with hundreds of thousands of servers across the world, and interconnecting
them into a wide-area backbone.

However, a different scaling strategy has quickly become standard industry
practice. Instead of serving each broad geographic area from just one or two
mega-DCs, in many geographies, large cloud providers have transitioned to
using a collection (typically 2-20) of smaller DCs within tens of kilometers
of each other, referred to as a “region”. This shift away from mega-DCs is
driven by two pressures: (a) the difficulty of siting and provisioning large
facilities in or near dense metro areas due to limited resources such as land,
power and connectivity; and (b) application desire for fault tolerance in the
face of losing one or two large facilities to catastrophes like flooding and
earthquakes. These fundamentals have forced all of the largest DC operators,
including Amazon [51], Facebook [52], Google [53], and Microsoft [54], to
increasingly rely on such regions.

Large volumes of traffic flow between DCs in a region, thus requiring a high-
capacity network typically referred to as a regional Data-Center Interconnect
(DCI). The growth of the DCI has led to it incurring significant costs for cloud
providers, as, for example, seen by the explosive increase in the total number
of 100G ports deployed: there are two orders of magnitude more regional
DC-to-DC ports than WAN-facing ports [54]. High capacity notwithstanding,
superficially, the design of such DCIs appears trivial:

• The number of DCs to interconnect is small.

• Each DC has a known available capacity.

• DCs are only a few tens of kilometers apart at most.
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Yet, as we shall show, DCI design is challenging due to several operational,
cost, and technological constraints that are different from those for both
intra-DC networks, and DC-WANs used for inter-region connectivity. These
constraints lead to complex decisions on both the network’s topology, and
how this topology is realized with appropriate switching technology.

2.2 The DCI network design problem

A regional DCI connects 5-20 DC sites within tens of kilometers. The problem
of network design in this setting requires 4 inputs:

• DC site locations. Our focus is the network; DC siting is itself
an interesting problem but requires separate treatment as many of
the involved factors are non-networking, e.g., the particular buildings
available, their cost, connectivity to not just network providers, but
power and ground transit infrastructure, etc.

• DC capacities. Based on each DC’s size and other business factors,
we know each DC’s network capacity, i.e., how much traffic a DC can
maximally send or receive to other DCs in the region. For convenience,
we translate the Gbps capacity into a number of fibers, e.g., capacity
B Gbps translates to B/C · λ fibers, where λ is the number of wavelengths
per fiber, and C the bandwidth per wavelength in Gbps. In this example,
P = B/C is the number of electrical ports, i.e., transceivers, required
at each DC.

• Fiber map. The region’s available fiber is known in terms of fiber
ducts between two types of nodes: DCs and “fiber huts”, which are in-
termediate nodes housing switching and other equipment like amplifiers.
Where convenient, huts can co-exist with DCs. For our purposes, fiber
ducts are unconstrained in the fiber available to lease: each fiber duct
contains hundreds of individual fibers, with typically only a fraction
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of those lit. This is standard industry practice to amortize the cost of
constructing a duct.

• Component failure model Network devices fail over time. Failures
like fiber cuts or transceiver/switch malfunctioning can have a severe
impact on cloud application performance. Since even the slightest
degradation in network performance has a substantial influence on
distributed workloads [26], [55], cloud providers must make sure that
failures are resolved in the order of several seconds. In this thesis, we
work with a simplified failure model where we provision additional
capacity to support up to Fmax simultaneous fiber duct cuts, given that
the cuts of the entire duct are one of the most damaging failure types.

The above inputs are outside the network designer’s control. DC sites, ca-
pacities, and the maximum number of failures allowed are set by operational
needs. Expanding the fiber map is possible in some regions but is typically
avoided: it is time-consuming, has a high up-front cost, and is unlikely to
improve routes, especially in dense metro areas that already have plentiful
fiber and are space-constrained against further expansion.

A simple example of DCI input specification is shown in Fig.2.1. The
region’s fiber map, including all available fiber huts and ducts, is demonstrated
in Fig.2.1(a), and the 4 DCs the operator has built or plans to build in this
region are shown in Fig.2.1(b). For this running example, we will assume
that all DCs have the same capacity of f fibers each.

Given the DC sites, capacities, and fiber map, we must decide on the
following outputs:

• Topology. Which DC-DC connections are direct, i.e., without needing
intermediate routing at other DCs or huts? This decision dictates the
subset of the fiber map that is used, i.e., which huts and ducts are
needed.

• Capacity. What number of fibers are leased in each fiber duct?
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(a) (b)

(c) (d)

(e)

Fig. 2.1: DCI design example: (a) The fiber map containing all available fiber
ducts and huts. (b) The region has 4 DCs for which DCI connectivity is
to be determined. (c) The centralized approach uses a hub to which all
DCs connect; in practice, 2 hubs are used for resilience, but only one is
shown for clarity. (d) An extreme version of the distributed approach,
with all pairs of DCs connected directly to each other. (e) A sparser
distributed approach, with two pairs of DCs – each pair connects to a
hub, and the two hubs connect to each other.
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• Switching. how is switching (e.g., electrically vs. optically) imple-
mented at the DCs and huts?

Loosely, one can think of the topology and capacity decisions as provisioning
problems, answers to which depend on the design goals: Do we insist on
shortest path connectivity, or are longer paths acceptable? Do we provision
non-blocking connectivity between all DCs, or is an oversubscribed fabric
acceptable? How much failure resilience do we need in terms of fail-over
paths?

On the other hand, switching is more tied to implementation: What equip-
ment is used at DCs and fiber huts, and how is it interconnected such that it
correctly instantiates the topology and capacity decisions? The industry’s
standard method of switching is to deploy electrical switches. The data travels
on each fiber in optical wavelengths, and at given switching points, it leaves
the optical domain, such that switches can reroute data as necessary.

However, there is a complex interplay between topology and capacity and
switching: the switching technology can place constraints on the topology.
For instance, an uninterrupted run of fiber, without amplification or termina-
tion at a DC or hut, referred to as a “fiber span”, cannot be longer than a
particular length.

While we will make the goals and constraints more precise in §2.3, the
above context suffices to examine the design space and trade-offs for DCI
networks in terms of two broad approaches.

The centralized approach uses a hub-and-spoke topology: DCs in a region
all connect to a centralized hub. In the example in Fig.2.1(c), one of the huts
is used as a hub, and no other huts are used. There are no direct DC-DC
connections, with all connectivity going through the hub. For a non-blocking
interconnect, the fiber ducts connected directly at the four DCs will carry
f fiber-pairs to connect each DC’s full capacity to the hub, where sufficient
switching hardware must be provisioned. The remaining central duct carries
the 2 · f fiber-pairs from the two DCs on the right.
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For simplicity, we illustrate and discuss only one hub in our example, but
for failure resilience, two hubs are used, and each DC connects to both. The
hubs provide a “big switch” abstraction, whereby all DC-pairs are connected
in a non-blocking fashion to each other. This approach is presently used in
Microsoft Azure [54].

The distributed approach directly connects DCs to each other. An ex-
treme version of this approach would build all pairs of DC-DC connections,
i.e., O(n2) for n DCs, like in Fig.2.1(d). In this example, for non-blocking
connectivity, 3 · f fiber-pairs are needed at the four fiber ducts that originate
at the DCs (one fiber-pair each for the other three DCs), with 12 · f fiber-pairs
on the central duct. We also highlight here the aforementioned interplay with
switching: due to technology constraints, it may not be possible to instantiate
this design as is, e.g., because some of the DC-pairs that we want to connect
directly are too far to be connected over an uninterrupted fiber span, and
need amplification at a hut in between.

More generally, one can build a variety of sparser distributed networks,
with some DC-DC pairs eschewing direct connectivity in favor of transit
through other DCs or huts. An example of this is shown in Fig.2.1(e), where
two pairs of DCs connect to hubs, with the hubs connecting to each other.
In this case, for non-blocking connectivity, f fiber pairs are needed on the 4
DC-incident fiber ducts, and 2 · f fiber-pairs on the central duct. From public
resources [51], it appears Amazon AWS broadly uses this approach.

Note: In the above discussion, we highlighted the amount of fiber used
primarily to clarify how different connectivity models can be instantiated
atop a given fiber map. However, the impact of the design choices is much
deeper than just the quantity of fiber used. Different solutions achieve vastly
different outcomes in the following design dimensions: performance, reliability,
operational flexibility, and cost, as we discuss next.
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Fig. 2.2: DC-hub-DC paths can sometimes be
much longer than DC-DC ones.

2.2.1 Dimension #1: Latency

An obvious distinction in the centralized and distributed models is the
propagation latency they provide between DCs — the distributed approach,
provided the right DC-DC links are provisioned, can substantially lower
latency by eschewing transit through a hub. Fig.2.2 demonstrates this contrast
in the Tokyo region.1 The two hubs are located South of two of the DCs in
the region. The DC-hub connections are 53 km to 60 km in terms of fiber
distance, resulting in a maximum DC-DC roundtrip latency of 1.2 ms. In
contrast, a direct DC-DC connection of 19 km would achieve a 0.2 ms latency,
a 6× latency reduction.

Fig.2.3 investigates this latency inflation by using Microsoft Azure’s DC
locations across 22 regions. In some cases, direct DC-DC paths can reduce
roundtrip propagation latency by several times, similar to the example in
Fig.2.2; in more than 20% of cases, the reduction is more than 2×2. As not

1 Example regions and fiber maps used throughout the paper use mock-up drawings that
resemble but do not represent Microsoft Azure’s network maps.

2 Inter-connecting DCs within Availability Zones [54] may alleviate some of this latency
inflation of centralized topologies similar to semi-distributed topologies as in Fig.2.1(e).
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Fig. 2.3: Latency inflation of paths via a hub compared to direct ones.

all DCs are connected to one another in these regions, we estimate DC-DC
latency using an industry rule of thumb: multiplying the geo-distance by
2× [56], [57].

The astute reader will notice from Fig.2.2 that part of the reason the
DC-hub-DC paths are much longer is that both hubs are close to each other
– if they were more spread out in the region, in many cases, at least one
hub-path could be much shorter. Unfortunately, the hub placement is not
this flexible, as we discuss next.

2.2.2 Dimension #2: Siting flexibility

Bounding DC-DC latency requires constraining the locations of DCs and
hubs. The maximum latency allowed between any two DCs is typically
specified in Regional Service-Level Agreements (SLAs) that implicitly define
the maximum DC-DC fiber distance — Azure limits fiber-distance to 120 km
for any DC pair [54]. Analyzing data from Microsoft Azure’s regions shows
that the resulting siting constraints are much more rigid for the centralized
design than the distributed one, making the latter preferable for maximizing
deployment flexibility.
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Fig. 2.4: Reliability vs.flexibility in the centralized approach. The circles are for
intuition; in practice, we must consider real fiber distances.

For the centralized approach, the 120 km limit restricts each DC-hub
connection to at most 60 km of fiber. Thus, once the hubs are placed, a
service area for placing DCs is determined as the intersection of their 60 km-
radii, as shown in Fig.2.4. Comparing the left and right parts of Fig.2.4, we see
that placing hubs close to each other would maximize the permissible service
area (intersection). But this comes at the cost of latency and reliability: (a)
if hubs are placed close to each other, DC-hub-DC paths can be longer; and
(b) if one hub is lost to a catastrophic event, the other is more likely to be
also affected if it is nearby. Thus, in practice, operators using a centralized
DCI approach must trade-off latency and reliability if they want greater DC
siting flexibility.

In contrast, by eschewing hubs, the distributed approach simplifies DC
siting and alleviates the difficult flexibility-reliability trade-off. We show in
Fig.2.5 this contrast visually for 4 regions, in the form of permissible area for
siting one new DC given existing DCs or hubs. The top and bottom rows of
the figure are for the same regions, except in the top row, the hubs are placed
nearby (within 4 km to 7 km of each other), while in the bottom row, they
are farther apart (20 km to 24 km). For the centralized approach, the service
area is smaller when the hubs are closer. The service area for the distributed
approach remains the same across the top and bottom rows as it does not
use or depend on hubs. In each case, the distributed approach allows a much
higher flexibility in picking DC sites. This analysis uses real fiber maps and
distances and the same criteria as cloud operation teams follow for DC and
hub placement.
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Fig. 2.5: The distributed approach expands available area for building new
DCs. These maps are for hypothetical regions, but with DC and
hub placement using real criteria as analyzed by Microsoft Azure’s
deployment team. The top row shows results with hubs within 4–7
km, and the bottom within 20–24 km. The maximum allowed fiber
distance for all DC-DC communication is 120 km for both models. In
the distributed model, DCs can be placed in the extended shaded area,
which is out of reach in the centralized model.
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Fig. 2.6: Across existing regions (different bars) service area increases by 2-5×
with a distributed approach compared to a centralized one.
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Using similar analysis, Fig.2.6 shows that the permissible siting area
for one new DC (given existing sites) would increase by 2–5× across 33
existing regions with the distributed approach compared to the centralized
one. Even though each additional DC that is built constrains future sites in
the distributed approach, it is still much more flexible than the centralized
one — the number of DCs in the regions used for this analysis ranges from
5–15 existing DCs, with regions with more DCs showing (as expected) smaller,
but still sizable (at least 2×), benefits with the distributed approach.

The size of the service area greatly impacts deployment costs and the
availability of critical resources like space, especially in busy metro areas.
Even a small increase in the service area can provide significant flexibility for
a provider and reduce capital costs.3

2.2.3 Dimension #3: Implementation ease

The implementation of the centralized approach is simple, effectively breaking
up a mega-DC into multiple sites — the uppermost (core) switching tier of
what would have otherwise been a mega-DC resides at the hubs, such that
connections between this and lower topology tiers are now externalized fiber
connections traversing a few tens of kilometers. Operationally, the first step is
picking the sites for the hubs and provisioning them, anticipating the needed
switching capacity. Then over time, the DCs are built such that each DC is
within a threshold fiber distance from each hub — as all DC-DC connectivity
traverses a hub, this constraint ensures that DC-DC distances (latencies) are
bounded per the SLA. The big-switch abstraction further eases management
and provisioning; each DC connects all its capacity to the central switching
fabric, where a non-blocking network connects it to other DCs. This approach
can be easily replicated across regions irrespective of the underlying fiber
layout.

3 Land scarcity has even motivated building vertical DCs [58].
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A distributed approach requires greater design effort in planning which
DC-DC connections are made and at what capacity, such that appropriate
infrastructure can be provisioned at each DC. Operationally, the first DCs
can be built relatively unconstrained, but later DCs must be within a fiber
distance threshold of each existing DC. Once it is determined which physical
DC-DC links will be built, one must decide on routing such that each DC-
DC pair has a path, direct or otherwise, with enough capacity. Given the
physical links and routing, DC-DC link capacity can thus be determined
and implemented at the physical fiber layer. For traffic from DC A to C
transiting through DC B, the A-B fiber carries both direct A-B traffic and
A-C traffic. The A-C traffic is switched using electrical switches installed at
B, requiring conversion from the optical domain to electrical, followed by
electrical switching, followed by conversion to optics again. Thus, capacity
provisioning must account for transit capacity appropriately. Further, small
DC facilities are typically severely constrained in terms of available power
and space resources, and supporting connectivity to multiple other DCs
may not be feasible. Thus, care needs to be taken as to which DCs can be
inter-connected beyond just fiber capacity.

Thus, for provisioning, the centralized approach is a natural extension of
today’s Clos networks, while the distributed approach needs additional design
effort. Further, expanding a region to add more DCs or capacity at existing
DCs also poses different challenges for the two approaches. Centralized DCIs
require the hubs to have enough space and power for the maximum predicted
region scale; accommodating unanticipated growth in a region is thus difficult.
The distributed approach requires similar provisioning at multiple (smaller)
switching points when a region is expanded.

2.2.4 Dimension #4: Cost

While we defer a complete cost analysis to §2.3.3, we can use regional network
port counts to flesh out the design space coarsely.



2.2 the dci network design problem 31

Fig. 2.7: Relative port cost breakdown for electrical and optical networks as
topologies become more distributed. Total cost is estimated based
only on per-port cost. “Electrical with SR” uses cheaper short-reach
transceivers for connecting DCs within a group.

To understand the cost implications of supporting distributed topologies,
we look at a simple model of N DCs of capacity P , in terms of physical DCI
ports. Here, a DCI port reflects an electrical switch port of some bandwidth
dedicated to the DCI network at a particular DC. We further assume that the
N DCs are organized in G groups. To simplify, we consider all G groups to be
balanced in size and that all DCs in a group are interconnected using a group-
local hub. Further, we assume all-pairs direct connectivity across groups.
This simple model allows us to move gradually from centralized towards
distributed topologies: G = N represents a fully distributed topology with
all DC-DC pairs directly connected, while G = 1 represents the centralized
topology.

For G = 1 and a capacity of P ports per DC, the total number of ports
required in the topology is equal to 2 ·N · P , i.e., double the total capacity
of all DCs, as N · P ports are required at the hub. For G > 1, the number
of ports needed to connect DCs within a group is 2 · P ·N/G. Each group
hub needs to support P ·N/G capacity downstream and (G− 1) ·N/G ·P ports
upstream to other groups, for a total of N · P ports. This means that the
capacity of the hub is essentially independent of the size of the group N/G;
each group hub needs to support the same capacity irrespective of how
distributed or centralized the topology is. In total, the topology requires
(G+ 1) ·N · P ports.
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This is shown in Fig.2.7 using an example region of 16 DCs. The figure
further breaks down cost contributions from different hardware components:
(a) electrical switch ports and (b) DCI transceivers, based on realistic cloud-
provider prices where a transceiver costs roughly 10× an electrical port.
The figure shows that in such a region, the relative cost of supporting a
fully meshed distributed topology is roughly 7× the cost of the centralized
topology. The semi-distributed topologies are also more expensive than a
centralized one, even when we account for group-internal connectivity using
cheaper short-reach optical transceivers, which is optimistic, as the required
hub-DC distances to be able to use such transceivers (≤2 km) will not always
be achievable. The results highlight that the biggest contributor to the cost is
the optical transceivers. The third column shows the cost of an optical DCI
network, assuming we could replace transceivers with optical reconfigurable
ports, the approach we advocate.

2.2.5 Analysis summary

Our analysis reveals clear pros and cons for each approach: the distributed
approach has clear advantages in latency and siting flexibility, but entails
greater complexity and cost. Thus, to make the distributed part of the design
spectrum more accessible by lowering these cost and complexity barriers, we
propose Iris.

2.3 DCI design goals and constraints

Practically realizing a Data Center Interconnect deployment requires ad-
dressing a large set of constraints: operational constraints that derive from
application requirements and workload specifications, and technology con-
straints imposed by the physical characteristics of the optical equipment
used.
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2.3.1 Operational constraints

OC1. Latency SLA — To provide application placement flexibility, DCI has
to offer very low latency between data centers, so that parts of a distributed
application that are deployed in different data centers within the same
region, still do not observe any performance degradation. It has been shown
statistically that many cloud applications today suffer under latency increase
higher than 1ms [26], [59], [60]. Thus, while designing a DCI, we have
to provide strict latency SLAs and bound the physical distance between
data centers. For existing SLAs and industry practices, this translates to a
maximum DC-DC fiber distance of 120 km (§2.2.2).

OC2. Any traffic matrix — Each DC’s aggregate network capacity is
known based on the number of machines in each one of them, application
needs, and other business factors. To provide the desired flexibility as well as
high performance, the DCI should accommodate any traffic demands that
are not bounded by DC capacity, as in the hose model [61]. DCI links are
typically symmetric, so we do not distinguish between ingress and egress
capacities, assuming symmetric demands without loss of generality.

OC3. Shortest path — Given that many cloud applications can vastly
benefit even from the smallest improvements in latency, traffic between DCs
must always use the shortest available physical path.

OC4. Failure resilience — Based on reliability goals, an operator specifies
a number of fiber cuts that must be tolerated, i.e., for any number of cuts
up to the specified tolerance, OC1-OC3 should continue to hold. A fiber cut
here means a fiber duct destruction, i.e., all capacity for all fibers traversing
the duct are lost. For our description, we use a tolerance of 2 cuts, in line
with operational practice.
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Fig. 2.8: Typical DCI optical link, components and 400ZR specifications.

2.3.2 Technology-rooted constraints

The constraints imposed by the physical characteristic of communication
devices, and in particular optical communication components, has the critical
impact on how we build and deploy DCI networks. Today’s DCI is electrically-
switched. That means that the network comprise point-to-point static optical
links between any two sites (DC-DC or DC-Hub). Fig. 2.8 shows a typical
example. We consider transceivers that plug directly into DC electrical
switches (Tx,Rx in Fig. 2.8) [54], and in particular, the 400ZR transceivers
(400 G, 16 QAM) [14], which have been standardized for DCI and are expected
to be deployed soon across most providers. Dense Wavelength Division
Multiplexing (DWDM) is used to combine 40− 64 optical signals at different
wavelengths (colors), one per transceiver, covering the C-band.

On the receive side, optical signals need to respect the minimum op-
tical power and optical signal-to-noise ratio (OSNR) thresholds given by
transceiver specifications. The received optical power is dictated by the
sending transceiver’s transmit output power minus losses due to optical
components in the link, such as the fiber and mux/demux elements. OSNR
is affected by noise introduced by elements like amplifiers. Fig. 2.8 includes
the details of expected 400ZR OSNR and power values, as well as typical



2.3 dci design goals and constraints 35

1 2 3 4 5 6 7 8
0
4
8

12
16

O
SN

R 
pe

na
lty

 (d
B)

Number of on-path amplifiers, N

Emulated lossTx RxAmp
x N

Fig. 2.9: OSNR penalty vs. amplifiers. The experimental setup (top) uses atten-
uators between amplifiers to match the amplifiers’ gain.

losses for elements on point-to-point links. Any DCI architecture would need
to respect these thresholds, which, in turn, lead to the following constraints.

TC1. Optical link distance — Optical amplifiers on both side of the link
compensate for power losses, and have a typical gain of 20 dB. Thus, assuming
a typical fiber loss of 0.25 dB/km [54], the receiving amplifier (Fig. 2.8) can
compensate loss for a maximum DC-DC link distance of 80 km, absent in-line
amplification.

TC2. End-to-end amplifier count — Additional in-line amplifiers between
sites can increase reach (e.g., up to 120 km) and/or allow for extra on-path
optical components to enable reconfigurability. Unfortunately, amplifiers
add noise, degrading the amplified signal’s OSNR [62]. To quantify this, we
measure the OSNR of transmitted signals at the output of multiple amplifiers
in our testbed (Fig. 2.9). The first amplifier adds an OSNR penalty to the
unamplified signal equal to the amplifier’s specified noise figure (∼4.5 dB).
Beyond this, each doubling of the number of amplifiers on the line degrades
OSNR by ∼3 dB. The observed penalty agrees with theoretical models that
examine the impact of cascaded amplifiers on OSNR [63]. With 400ZR,
between sites, we can tolerate up to 11 dB OSNR penalty (Fig. 2.8). Allowing
an additional couple of dBs for various transmission impairments and amplifier
gain ripples,this translates to an amplifier budget of 9 dB, or a maximum
amplifier-count of 3 end-to-end (Fig. 2.9). Thus, at most one extra in-line
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amplifier can be added in any reconfigurable physical layer design with
maximum distance of 120 km.

TC3. Power management — When the optical network is (occasionally)
reconfigured, the fiber spans part of a path can change. In turn, some optical
amplifiers see their input power change, e.g., if the input fiber span is now
shorter, their input signal sees lower loss, and requires less amplification.
Absent an adjustment in the amplifier’s gain or proper management of the
input power, the signal OSNR would be degraded. Unfortunately, adjusting
the gain of amplifiers region-wide in a synchronized fashion would be severely
limiting, as it can take several seconds for optical signals to stabilize [64]. Thus,
appropriate management of input power to the amplifiers is mandatory in
any architecture where the same amplifier compensates losses across different
paths over time.

TC4. Number of optical reconfiguration elements — Components that
allow optical reconfiguration also cause optical power loss, the degree of
which depends on the components used. Reconfiguration can be achieved
at two granularities: (a) at the fiber level, with all traffic from one fiber
shifted to another, using optical space switches (OSSes) with up to a few
hundred ports [65], [66]; and (b) at the wavelength level, shifting individual
wavelengths across fibers, using a Wavelength Selective Switch (WSS) with
at most a few tens of inputs. Large-scale wavelength-level switching requires
combining individual components (de/mux and OSSes) into what is called
an Optical Cross-Connect (OXC) [67], [68].

For a maximum distance of 120 km with one extra amplifier (i.e., 40 dB
total budget), after accounting for a fiber loss of 0.25 dB/km, we have 10 dB
available for optical reconfiguration elements. OXCs and OSSes have typical
losses of 9 dB and 1.5 dB, respectively. This translates to at most one OXC
or 6 OSSes end-to-end.
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2.3.3 Component costs and operational costs

Besides the above constraints, cost is also crucial in DCI design, especially
given that each DCI deployment costs tens of millions of dollars and major
providers have tens of regions.

Transceivers are the most crucial cost factor, given their large volume: each
electrical port needs one. A DC-DC connection that carries λ wavelengths
requires 2 · λ transceivers. The transceivers used in our analysis are DWDM
switch-pluggable transceivers like the 400ZR, or today’s 100G equivalent [54]
designed to cover DCI distances, e.g., up to 120 km. Prices for such DCI
transceivers are not public, with only volume-based prices offered to cloud
providers. As a coarse reference point, vendors are estimating such DCI
transceivers at roughly $10/Gbps [69]; this implies an approximate cost of
∼ $1, 300 per year after accounting for 3-year amortization. Note that while
traditional long-haul coherent transceivers designed to cover thousands of
kilometers may be used in DCI, their cost is several times the one of custom-
designed DCI transceivers [69], and thus are not considered further in our
analysis.

Fiber in regional networks is typically inexpensive because already laid out
fiber ducts are abundant in metro areas. The caveat is that fiber cannot be
arbitrarily added to minimize distances (§2.2). Fiber-pairs are priced per span,
independent of distance, with lease price varying significantly across regions.
A ballpark amortized figure is ∼ $3, 600 per year [70]. Recall that a single
fiber carries data from 40− 64 transceivers, which results in the total cost of
deploying one 64 wavelength fiber being around 170, 000. Also note here that
the cost of one fiber is lower than the cost of only 3 transceivers. This will
be the essential observation in creating our new DCI architecture (§3).

OSS ports cost an order of magnitude less than one transceiver, e.g., 100-200
dollars per (unidirectional) port [71].

OXC ports are slightly more expensive than OSS ports, due to the need
for de/muxes, but still much cheaper than transceivers.
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Amplifiers are equivalent in cost to a few transceivers. However, since each
of them amplifies all the wavelengths in a given fiber, their contribution to
the cost is not substantial.

Operational costs. While our quantitative analysis only accounts for com-
ponent costs, we briefly comment on operational costs of two types: (a)
network management; and (b) power and equipment space. Precisely apprais-
ing management costs is inherently hard, especially for novel, non-operational
architectures like the one proposed in this thesis. Indeed, we expect that there
will be some initial ramp-up cost for developing tooling to manage a novel
architecture, but once done, steady-state management cost should be similar
to or lower than today’s designs across the entire spectrum of centralized
to distributed DCI networks, on account of the reduction in the number of
ports to be managed in our fully-optical design. Costs like power and space,
on the other hand, are expected to be significantly lower with our solution:
most of the optical devices used are passive, requiring orders of magnitude
less power than an electrical fabric. In terms of space, optical switches with
hundreds of ports are just a few rack-units in size [65], in comparison to the
rack-size electrical switches needed at this scale.

2.4 Summary

In this chapter, we explored the trade-off between centralized and distributed
topologies. We demonstrated that despite centralized architectures being
simpler and more cost-effective implemented with today’s technology, the
demand for lower latency and larger siting flexibility moves cloud providers
towards distributed approaches. Thus, in the following chapter, we present
a new architecture, Iris, that lowers the cost of distributed DCI topologies
and makes them practically feasible while satisfying all operational and
technology-rooted constraints described in this chapter.



3
A NEW GENERATION OF DCI

As we have shown, distributed data center interconnect design has many
desirable properties. It lowers the latency, which is essential for many cloud
workloads, and increases data center siting flexibility, which has a critical
impact allowing cloud providers to build new cloud regions in densely popu-
lated areas faster so that they can follow the ever-growing need for scaling
modern applications and workloads. However, the cost and complexity of
the distributed DCI design prohibit modern providers from deploying fully
distributed DCI topologies today.

To lower the cost and complexity barriers in DCI network design, we
propose Iris, which uses an all-optical circuit-switched network core. Thanks
to the observation based on coarse-grained historical workload specifications
that the traffic is stable at the DCI layer, Iris is able to leverage low-cost
high-latency fiber-switching equipment and eliminates the need for in-network
transceivers. Compared to today’s electrical DCI networks, Iris simplifies
network structure by reducing the total number of in-network ports. The
resulting reductions in cost and complexity benefit networks on the entire
spectrum from fully centralized to fully distributed, but are much larger
for larger-scale regions and more distributed network designs. Thus, Iris
makes more of the design space practicable, unlocking the latency and siting
flexibility advantages of distributed networks while lowering their cost and
complexity. Note that Iris substantially reduces, but does not completely
ameliorate the complexity of distributed design, which, with any architecture,
necessitates the management of in-network equipment across multiple sites,
instead of just two hubs. But if the pressure by cloud tenants and their
workloads for low latency persists, a shift towards distributed designs may
be inevitable.

39
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Iris exploits two key observations: (a) DCI cost is dominated by the
specialized electrical-optical transceivers needed for covering DCI distances,
and (b) regional fiber is abundant and cheap relative to transceiver cost. Iris
design thus makes an extremely favorable cost trade: some additional fiber in
exchange for vastly reducing the number of transceivers. To exploit this cost
structure, Iris’s all-optical approach gives up the finer switching granularity
of packet switching in favor of coarser optical switching.

Although simple in terms of the number and type of components, Iris
introduces an additional complexity dimension that is not present in electrical
DCI architectures due to their fine-grained switching capabilities - Iris requires
dynamic component reconfiguration under changes in traffic patterns. Even
though these network reconfigurations may become challenging in a general
case and cause partial network downtime, we show that they will not have
significant negative impact on the performance of today’s cloud applications.
By looking at the long history of execution of modern cloud applications
and their communication patterns, we know that aggregated traffic between
data centers is relatively stable over time, which gives Iris enough time to
reconfigure the network. However, to truly eliminate the danger of traffic
changes for future cloud workloads, Iris should not only look at the history
of workload specifications in the cloud but also be integrated with Flux (§5),
a system that can automatically obtain fine-grained workload specifications
about the future behavior of applications and communication patterns, so
that the network can prepare and execute the reconfiguration ahead of time.

While optical switching is well-studied for both intra-DC and DC-WAN
networks, the constraints of regional DCIs provide unique challenges and
opportunities. Unlike intra-DC optics [72]–[75], fast reconfigurability is not
necessary as the traffic is slow-changing; the challenges rather stem from
the physical layer, which needs to ensure that the budgets of optical devices
for power and signal quality are respected across a wide range of distances,
and through a varying number of optical switches. On the other hand, while
optical DC-WAN networking accounts for even more stringent physical-
layer constraints due to the long and diverse distances, the solutions there
typically involve optimizing spectral efficiency and switching at the wavelength
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granularity, e.g., OWAN [76]. For DCI networking, we find that this is
more complex than necessary. Instead, Iris only switches capacity at fiber
granularity using relatively simple fiber switches, thus requiring minimal
support from the physical layer. We find that wavelength switching is more
expensive for DCIs, making Iris the preferable solution in both cost and
complexity.

Using testbed experiments, augmented with large-scale simulations, we
evaluate the benefits and feasibility of Iris. We find that Iris: (a) can be
implemented using off-the-shelf hardware; (b) involves limited reconfiguration
that does not hurt application-layer performance; (c) enables the latency and
location-flexibility advantages of the distributed approach; (d) allows the
distributed approach to be implemented at a cost within 1.1× of a traditional
centralized approach, and in fact, cheaper than it in more than 98% of the
settings examined; and (e) reduces network complexity by reducing the total
number of ports, electrical or optical, that need to be managed.

Outline In this chapter, we first provide a high-level motivating example
that shows the benefits of using an all-optical design compared to simple
electrical switching (§3.1). Section §3.2 describes how to provision DCI
topology irrespective of switching technology being used in the process.
Sections §3.3, §3.4, §3.5 show how a particular topology can be implemented
using electrical switching, wavelength switching, or Iris respectively, while
§3.6 introduces a hybrid design that combines Iris with the wavelength
switching design to reduce the fiber overhead at the cost of slightly increasing
the network complexity. Section §3.7 provides experimental details related to
the complexity, cost, and physical feasibility of our approach. Section §3.8
gives an overview of related work in other domains that exploited similar
design ideas to Iris, while §3.9 discusses some of the limitations of our work
and how to further mitigate those limitations.
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Fig. 3.1: An example fiber map with data center placement. Assuming shortest-
paths the dark highlighted links are only used.

3.1 Cost comparison: a motivating example

To motivate our all-optical design strategy, we use a small, toy DCI design
example, with a fixed topology implemented both ways, i.e., using either a
traditional electrical approach, or Iris’s all-optical approach. The topology
used is the same semi-distributed one in Fig. 2.1(e), but is redrawn with
labeling in Fig. 3.1. DC1 and DC2 connect to one hub and DC3 and DC4 to
another. Each of the 4 DCs has a capacity of 160 Tbps. With 400 Gbps for
each of 40 wavelengths, this translates to f = 10 fiber-pairs.

For the electrical design, L1-L4 each carry 10 fiber-pairs, so each DC’s
full capacity is connected to its hub. L5 carries 20 fiber-pairs, such that the
network is non-blocking. The total number of fiber-pairs is thus FE = 60, and
the number of transceivers is TE = 2 ·FE · λ = 4800, as each fiber terminates
in a transceiver.

With Iris, transceivers are needed only at the DCs, i.e., TO = 4 · 10 · λ =

1600 transceivers. However, for optical switching in the network, Iris uses
additional fiber and OSS ports. §3.5 details how this is done, but in this specific
example, L1-L4 need 3 additional fiber-pairs, and L5 needs 6 additional fiber-
pairs. The total number of fiber-pairs thus increases to FO = 78. Each
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fiber-pair terminates at OSS ports at both ends, so 312 OSS ports are needed
in total.

Using the prices described in §2.3.3, the electrical design costs 2.7× more
than the optical one.1 This difference is rooted in the fact that transceivers
are the overwhelming expense: an OSS port costs an order of magnitude
less than a transceiver, and while one fiber’s cost is a few times that of a
transceiver, the absolute number of fibers needed is nearly two orders of
magnitude smaller. Thus, using some extra fiber and OSS ports to reduce
the number of transceivers is a very profitable trade.

Iris’s advantage is greater for larger regions, and for more distributed
topologies. Thus, Iris enables cost-effective networking for larger-scale regions
with the favorable characteristics of distributed topologies. Our detailed
analysis (§3.7) using real fiber maps and cloud-provider component costs
shows that Iris would be 7× cheaper in the median than an electrical switching
implementation.

3.2 Topology & capacity provisioning

As previously discussed, planning a regional DCI network entails using the
region’s fiber map and data center locations and capacities, to decide on
the topology, fiber capacity of each connection, and the use of switching to
implement the topology and capacity decisions.

We first jointly address topology and capacity, as these derive primarily from
operational constraints, and are largely the same regardless of switching. For
optical switching, meeting the technological constraints sometimes requires
revisiting topology and capacity decisions; we discuss such cases separately
in §3.5.

1 As other costs are much smaller, accounting for only fiber and transceivers arrives at nearly
the same number, i.e., (1300TE + 3600FE)/(1300TO + 3600FO) = 2.73.



44 a new generation of dci

We use a natural graph abstraction: DCs and huts are nodes of graph G,
and the available fiber forms edges between them. Fiber edges longer than
80 km can be excluded right away: regardless of electrical / optical switching,
longer point-to-point connections are not possible (TC1). Our task then is
to decide which subset of edges are used, and at what capacity. Algorithm 1
achieves this by computing which links lie on shortest paths (OC1 and OC3)
in any failure scenario (OC4) by exhaustively enumerating the latter.

Algorithm 1: Topology & capacity planning.
G init ← fiber map
∀ edge e ∈ G init: capacitye ←0
foreach failure scenario do

G ← Ginit \ failed fiber ducts
SP ← {shortest paths in G ∀ pairs}
foreach edge e ∈ G do

spe ← {sp ∈ SP | sp uses e}
Ge ← construct flow graph for e using spe

capacitye ←max(capacitye, max flow of Ge)

Determining which edges are used is trivial, but assigning their capacities
is not. Since each DC-pair uses only its (typically unique) shortest path,
one may naively assume that to support the hose traffic model (OC2), the
capacity of each edge is simply the sum of demands for DC-pairs traversing
it, where a DC-pair’s demand is the minimum of the two DCs’ capacities.
However, this leads to needless over-provisioning: e.g., a DC, say A, may be
part of multiple DC-pairs, say A-B and A-C, traversing an edge over shortest
paths; this naive approach would double-count A’s capacity for this edge. A
precise solution to capacity provisioning requires a max-flow computation
across an appropriately constructed “flow graph”. We adapt this from prior
work [77], and thus omit the details.

Algorithm 1 yields not only edge capacities, but also which fiber huts are
used: if a hut has no edges of non-zero capacity, it is unused. Thus, it fully
determines the network’s topology and capacity. Note that if shortest paths
are unique, as is typically true across real fiber maps, Algorithm 1 yields the
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unique (and hence optimal) solution for topology and capacity planning: only
one set of chosen huts and edges meets the constraint of achieving shortest
paths under all failure scenarios (OC3 and OC4). For settings with multiple
shortest paths, or when the shortest path constraint is relaxed, this is only a
heuristic that still meets all constraints, but does not necessarily provision
the minimal infrastructure.

We next discuss three granularities for switching, the last decision needed
to fully describe DCI planning, drawing out the reasoning for picking Iris as
the choice for optical fiber switching.

3.3 Electrical packet-switched network

Given the topology and capacity provisioning, an electrical packet-switched
(EPS) fabric is simple to build: just deploy enough switching capacity at
the DCs and huts using standard Clos networking techniques. Each fiber is
terminated with 2× λ transceivers, λ on each side. Transceivers are used to
send out traffic in the form of an optical signal to traverse long distances, but
also to convert the same signal back to the electrical domain for fine-grained
packet switching at DCs or huts. Although this conversion happens with little
to no impact on network performance, As noted in §3.1, the key impairment
of the electrical approach is its cost: it requires a large number of electrical
ports and transceivers, directly proportional to the number of wavelengths
per fiber terminated at each fiber hut.

3.4 Pure wavelength-switching

Instead of relying on fine-grained electrical packet switching to build DCI
networks, cloud providers could leverage wavelength switching using an
optical cross connect (OXC) architecture [67], [68]. To eliminate the need
for expensive transceivers, and switch traffic purely in the optical domain,
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cloud providers could just replace every electrical port with a significantly
cheaper OXC port, and keep the rest of the architecture almost unchanged.
Wouldn’t such a design be obviously superior? Surprisingly, the answer is
no. We analyzed this precisely, and here we only summarize the reasoning
behind this result:

• With at most one OXC switch on path (TC4) and only one amplifier
per path (TC2), it is not feasible to benefit from wavelength switching
in many settings.

• Wavelength switching adds complexity, requiring the solution of a
graph-coloring problem to avoid wavelength collisions.

• Even ignoring the above two issues, and using settings favorable to
wavelength switching (e.g., large n=20), at today’s prices, the addi-
tional components needed for wavelength switching are pricier than
the additional fibers our fiber switching design Iris, which we describe
next.

Although impractical for implementing the entire DCI design with today’s
technology, wavelength switching can still be used to reduce the fiber overhead
created by Iris. This hybrid approach where the majority of the traffic is
switched using fiber switching technology, and a small part of it still leverages
wavelength switching is described in §3.6.

3.5 Iris - optical fiber-switched network

To avoid the explosion of electrical ports, Iris uses an all-optical network core,
i.e., data does not leave the optical domain except at end-points. By leveraging
fiber-switching technology, this approach can provide the substantial benefits
of a distributed DCI network at cost similar to a centralized one. At each
hut, only optical space switches (§2.3.2) are used to direct all wavelengths
carried in a fiber from one port to another, thus reducing port requirements
to one per fiber. This effectively sets up DC-DC optical circuits through the



3.5 iris - optical fiber-switched network 47

network. However, this requires deploying appropriate optical equipment at
intermediate DCs and huts to address three problems:

• Coarse-grained fiber switching needs more network capacity than com-
puted above in §3.2.

• Since DC-DC data streams travel end-end as optical signals, we must
deploy amplification as necessary for the now longer distances (TC1
and TC2).

• We must limit the number of optical switches on each end-to-end path
(TC4).

The latter two problems are self-evident, based on our earlier description of
technology constraints in §2.3.2, but the first is a significant challenge of fiber
switching, and requires some explanation. The need for additional capacity
stems from the coarse granularity: while for EPS fabrics, integer number of
wavelengths (as we assume DC capacities are specified in) can be flexibly
switched, fiber-switching requires rounding to the fiber-level. Consider a DC
that has a capacity equivalent to z fibers, and sends x and y to two DCs, such
that x+ y = z, but y comprises only a fraction of one fiber’s capacity, such
that x = z. Switching at fiber granularity implies that we now need z + 1
capacity from the DC. Worst-case scenarios, which we want to tackle per
OC2, necessitate that for each DC-pair, one additional fiber is necessary to
address this issue, increasing fiber cost by n · (n− 1) fibers for a region with
n DCs. Note though, that no additional transceivers are needed: transceivers
at the DCs can still be multiplexed across the fibers as necessary. Overall,
we find that this is a highly favorable trade-off.

For the second problem, amplification, we use a heuristic to ensure that no
umamplified segment exceeds our distance constraint (TC1), and each path
has at most one amplifier (TC2). Our heuristic also tries to greedily reduce
the number of amplifiers. The intuition is to examine each failure scenario,
identify paths that need amplification, score each potential amplifier location
in terms of how many paths it would meet constraints for, add amplifiers as
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needed to the highest-scoring location, and iterate until the constraints are
met.

For the third problem, limiting each path’s switch-count (TC4), we use
a similar greedy approach. For each path with > 6 switching points, we
add “cut-through links” that replace one or more switch-points for the path
with an uninterrupted fiber between the endpoints of the replaced segment,
with adequate capacity for that path. We again attempt to minimize such
cut-throughs, by finding ones that resolve constraints for multiple paths.

Put together, the above solutions for capacity provisioning, amplification,
and cut-through placement, meet all our constraints. Our heuristics use
exhaustive enumeration across failure scenarios, and several iterations by
making reassessments after placing each amplifier or cut-through, but still ex-
ecute within a few minutes for even large region sizes with 20 DCs. Given that
this process only executes once for network provisioning, this is sufficiently
fast, and as we show later, provides significant cost reduction (§3.7).

3.5.1 Amplifier and cut-through link placement

We have to guarantee that transceivers from each data center can reach any
other data center in the region. There are two reasons why this could be a
potential problem. First, the distance between two sites can be longer than
80 km and the signal requires in-network amplification, and second, there
may be too many switching points on the path that reduce the signal power
below the power threshold for the receiver.

These problems can be resolved by placing in-network amplifiers (at most
one per path) or building “cut-through links” that traverse the switching
point without being interrupted (switched), and thus reduce the power loss.
Amplifier placement can solve both problems in some situations. Even if
the distance is short, but there are many switching points on the path, it
may make sense to place amplifiers and increase the signal power instead of
building cut-through links that reduce the power loss, because the number of
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amplifiers needed could be cheaper compared to allocating additional fiber
for cut-through links.

Note that there is always a configuration that meets all constraints because
no links longer that 80 km is allowed in the topology in the first place. This
means that a path of 120 km can always be divided into two segments where
each of them is not longer than 80 km.

Our goal is to meet all constraints by minimizing the cost. An optimal solu-
tion would require exploring every possible combination of failures, amplifier
placement and cut-through links. This problem has combinatorial complexity
since for each path of h hops, there are 2h potential cut-through links to be
built.

To simplify the process, we place amplifiers using a greedy heuristic de-
scribed in Algorithm 2. For every failure scenario, we identify all paths that
are long and require amplification. For each path, we find all candidate
locations where amplifier placement can resolve the power budget constraint.
Since one amplifier can amplify only one fiber, the total number of amplifiers
needed in a particular location is calculated from the maximum demand
on all paths that require amplification at that location, similarly to the
maximum capacity calculation in §3.2. We also calculate how many of these
long paths suffer from too many hops that reduce the signal power and if
amplifier placement at a particular location would resolve that constraint as
well. Then, we assign a score to each location based on the total number of
constraints resolved versus the total number of amplifiers needed. Finally,
we place amplifiers to a location with the maximum score and repeat this
process as long as there are paths that require amplification.

After the amplifiers have been placed, there can still be paths that have
too many hops that cause the signal power to drop below the acceptable
threshold. Thus, we apply a similar heuristic as for the amplifier placement
to place cut-through links and avoid fiber switching at every hop. To do
that, we introduce the concept of a segment. If a path does not have an
amplification point, the segment is equivalent to the path. However, with an
amplification point, a path has two segments, one between the source and



50 a new generation of dci

Algorithm 2: Algorithm for amplifier placement
foreach failure scenario do

P ← {long paths that require amplification}
while size(P) > 0 do

S ← {possible amplifier locations ∀path∈P }
foreach location ∈ S do

noa ←# of amplifiers needed at location
noea ←# of amplifiers already at location
/* # of amplifiers to be placed */
ntbp ←max(0, noa - noea)
nop ←# of paths resolved by placing amplifiers at location
nhop ←# of paths that resolve the n-hop constraint by
placing an amplifier at location

location_score ← nop + nhop
ntbp

mloc ←the location with maximum score
place amplifiers at mloc
P ←P −{ paths resolved by mloc }

the amplifier, and one between the amplifier and the destination. For each
segment that has too many hops, we calculate all possible cut-through links
that would resolve the power constraint on that segment. Similarly to the
previous heuristic, we assign a score to every cut-through candidate based on
the number of paths that can utilize the link versus additional fiber needed
for that particular link. The cut-through link with the highest score is added
to the topology and the process starts again as long as there are segments
that have the power budget problem.

The proposed heuristics may not provide an optimal result in terms of
cost but they guarantee that all constraints will be met. First, the amplifier
placement algorithm assures that there are no long links that require am-
plification because of distance. Following that, the cut-through placement
heuristic guarantees that the distance between source/destination and the
amplification point can be bridged with a sufficient power budget.
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Fig. 3.2: Iris puts together available commodity components in a manner that re-
spects all the technology constraints, while still meeting our operational
goals.

The cost overhead due to additional amplifiers and cut-through links using
the described heuristic is 3% on average (8% in the worst case) compared to
the total network cost across all test scenarios.

3.5.2 Iris physical implementation

We next discuss physical implementation of Iris: how different components
connect to each other, and how they are managed.

Fig. 3.2 shows a full-system view with the details for 2 of the N DCs drawn
out, showing the send/receive parts respectively.

Sending from DC1: DC1’s internal Clos fabric sends outgoing traffic to its
tier-2 (T2 or core) switches. Internal routing to T2 switches can be achieved
using standard mechanisms like ECMP and anycast [78], such that traffic
for each external destination arrives at the right T2(s) in a load balanced
fashion. Each transceiver at each T2 converts this traffic to a wavelength;
Fig. 3.2 shows 3 transceivers / wavelengths for each of the 2 T2s. These
wavelengths are mux-ed into fibers (via OSS1), which are then switched
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towards destination DCs (using OSS2). OSS1’s function is allowing any
T2-transceiver to be fed into any fiber – thus instead of directly mux-ing
wavelengths from T2s, they are first fed into OSS1, whose outputs are then
mux-ed. Iris uses tunable transceivers at T2s, such that colors can be assigned
to each transceiver to make it trivial to pack them into outgoing fibers. After
each fiber is packed, it goes through amplification. OSS2 acts like any other
switching point; it switches both: (a) DC1’s outgoing capacity of C fibers,
plus N − 1 fibers to address the “fractional” capacity; and (b) any fibers this
DC transits for other DC-DC traffic (bottom-left in Fig. 3.2).

Intermediate switching: Fiber huts and on-path DCs performing interme-
diate switching use only an OSS and amplifiers. As noted earlier, amplifiers
can be used by any paths passing through. Implementing this in a config-
urable manner requires using amplifiers in a “loopback” fashion, whereby
their input and output are both attached to the OSS, such that an arbitrary
fiber can be directed through the OSS to the amplifier, fed back into the
OSS post-amplification, and then switched to an arbitrary OSS output. (See
hut H1 in Fig. 3.2.)

Receiving at DC2: The receive side largely mirrors the send. Besides
passing the traffic destined to this DC to demux-es and finally transceivers
(after amplification), fibers destined to other DCs can be switched towards
them by the OSS.

Amplifier power management: The above implementation, if based on
appropriate provisioning (§3.2), suffices to meet all our design constraints
except one: amplifier power management (TC3, §2.3.2). We use two methods
to ensure that amplifier gains do not need careful management. First, we
transmit the full C-band spectrum per fiber, i.e., all wavelengths, even if only
some carry data. Doing this using transceivers would be expensive; instead
we use amplified spontaneous emission (ASE) noise to fill only the unused
spectrum that is then combined through muxes with the “live” channels
(“Channel emulation” in Fig. 3.2). This ensures uniform gain profiles across
fiber segments of equal length regardless of their “live” channels. Second,
we operate all amplifiers at a fixed gain irrespective of the fiber length that
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they compensate. To ensure that no excessive power reaches the following
component in the physical link (i.e., the next amplifier), we use a power
limiter before each optical amplifier to bound its input optical power. These
are one-time design decisions rather than continual online management.

Regional IP routing and WAN traffic Note that irrespective DCI im-
plementation cloud providers choose, regional IP routing and WAN transit
remain the same as today. The higher tier of each DC has full regional route
visibility, and a few DCs transit WAN traffic. (Note: WAN traffic is a small
fraction of regional traffic.).

3.5.3 Dynamic reconfiguration

One potential challenge in deploying our solution is that Iris requires reconfig-
uration of optical components under changes in traffic patterns. That means
a subset of links must be drained and turned off for a short amount of time.
Although under frequent changes with high amplitude, the downtime could
substantially degrade the network performance, these big traffic changes are
not that common in today’s workloads. The reason for that is that DCI links
have capacity much higher than the communication need of any individual
application, so particular changes caused by a single application are not
immediately visible on the aggregated traffic.

Previous work supports our insights about traffic stability [11], [79]. For
instance, the traces collected at Facebook’s data centers indicate that the inter-
datacenter traffic changes less than 2% on average every second, which would
give Iris enough time to make smooth reconfiguration without significant
performance impact. [11].

Although rapid changes in traffic patterns are not frequent at the layer of
DCI, all our key design decisions are still geared towards reducing complexity
to make reconfiguration, when it is necessary, a straightforward process:

• fiber switching based on only simple capacity needs
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• basic wavelength management separately in each DC

• no online power management for amplifiers or any other optical compo-
nent

Iris controller: A centralized controller gathers DC-DC traffic demands,
and configures the network components appropriately. The small number
of sites with only tens of fibers per site, coupled with relatively infrequent
reconfigurations, simplify the control problem greatly, especially in compar-
ison to systems using optical reconfiguration in other settings like WAN
optimization [76] or data centers [73].

When the controller decides that a reconfiguration is needed, it first drains
traffic from paths that need to be torn down. It then reconfigures the OSSes
network-wide to enable new paths. The configuration of transceiver wave-
lengths, and channel emulation is done independently at each DC.

Reconfiguration time: OSSes are the bottleneck here. While tunable
transceivers can switch wavelengths in under 1 ms [74], [80], and unused
amplifiers can provide gain in under 2 ms [81], [82], the state of the art
for OSSes is ∼20 ms [83]. In the future, we expect sub-ms switching for
OSSes [84].

Ahead of time reconfiguration: The main insight on traffic stability
that made Iris possible today is completely based on historic observations
about traffic patterns. Thus, the Iris controller responsible for network
reconfigurations can only react after the traffic changes. Although the impact
of that late reconfiguration is minimal, as we will show in §3.7.3, ideally, cloud
providers would like to avoid any potential performance impact and make
changes to network configuration ahead of time. Such an early reconfiguration
system would only be possible if we manage to obtain workload specification
about future network behavior of cloud applications. In that context, systems
like Flux can help us to know the bandwidth requirements in advance, and
thus, make early network recofigurations (§5).
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Fig. 3.3: (left) Iris requires having one fiber DC pair that causes the total
overhead of O(n2) fibers; (right) Hybrid design reduces that overhead
by combining multiple residual links using wavelength switching.

3.6 Hybrid DCI design

While Iris fiber switched network is many times cheaper than an electrical
packet-switching fabric, one may wonder if the n2 fiber overhead of coarse-
grained fiber switching can be avoided. To further reduce expense, cloud
providers could combine course-grained fiber switching with finer-grained
wavelength switching technology. In this approach, fiber switching could
be responsible for handling most of the traffic, while wavelength switching
addresses fractional demands.

While indeed, this hybrid approach can provide savings in terms of fiber
compared to a pure fiber-switching network, these savings are entirely
negated by the cost of additional equipment required for wavelength switching
(see §3.7). It also adds substantial complexity, which would deter deploy-
ment. We thus conclude that fiber switching is the most viable switching
architecture for regional DCI networks.

Although the hybrid approach is relatively inefficient given today’s com-
ponent costs and the number of data centers, this situation may change in
the future. Suppose the price of network metro fiber increases compared to
the cost of optical switching components, or the number of connected sites
dramatically increases. In that case, the fiber savings provided by the hybrid
design may become very valuable.
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Hybrid design. To support any traffic matrix, a fiber switched network
requires n2 additional links to carry residual capacity. These links only
serve fractional capacity that cannot be accommodated in the base fiber.
Intuitively, many of these links could be combined using a finer-grained
wavelength switching technology, and thus, reduce the fiber overhead, as
shown in the example in Fig. 3.3. Residual capacity to different destinations
can be combined at the source data center and carried in one fiber to a
particular fiber hut on the shortest path for all combined wavelengths. At the
fiber hut, the wavelengths are separated and carried through dedicated fibers
to different destinations. The same process applies in the opposite direction
as well – residual wavelengths to the same destination can be combined at a
fiber hut and carried through one fiber to the common destination.

If we combine x residual fibers into one, we have to guarantee that these x
residual fibers combined cannot exceed the capacity of one physical fiber – λ
wavelengths.

Observation 1. Any two residual fibers coming from the same source can
be combined into one fiber.

To show this, we have to define the concept of base capacity. The base capacity
is the capacity that has to be provided to satisfy operational constraints
defined in §2.3.1, regardless of the technology used for implementation. Iris
requires the base capacity plus n2 residual links. The base capacity links are
always fully saturated with λ wavelengths. If the demand to a particular
destination is less than λ, the traffic is carried through a residual link.

If two residual fibers carry more than λ wavelength, it means there is
at least one fiber provisioned among those in the base capacity. Then, the
residual capacity to one destination will be transmitted through one fiber
from the base capacity and the other one remaining residual fiber. This result
enables a simple optimization that should reduce the n2 fiber overhead to
close to n2/2. However, we show we can potentially save even more.

Observation 2. Any n residual fibers coming from the same source can be
combined into n/4 fibers.
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.

Fig. 3.4: Illustration of the worst-case residual capacity allocation. The total
capacity that will be carried over residual links is equivalent to R · D/n

Let us assume a data center can reach n destinations (n residual fibers).
Assume that the aggregated traffic demand from this data center to all
destinations is D wavelengths. Without loss of generality, we assume that
D ≤ λ · n, where n is the total number of destinations (for larger D, the
difference would be carried through the base capacity). We want to calculate
the maximum capacity that must be carried through the residual fiber. n
residual fibers are shown in Fig. 3.4. By the definition of base capacity, we
know that the base capacity provisions at least B = D/λ fibers available,
and the rest must be transported through the residual fibers. Since there are
n destinations, we will need to provision R = n−D/λ residual links atop
base capacity.

We are looking for a traffic matrix that maximizes the capacity carried over
these R links. For any traffic matrix, we take the following approach: we sort
all demands to n destinations. The largest B fibers will be scheduled using
the base capacity, and the remaining part will go through the R fibers. The
total demand in R is maximized if every link carries exactly the same capacity
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D/n. Thus, the total capacity carried over residual links is (n−D/λ) ·D/n.
This function has the maximum for D = λ · n/2 and the total worst-case
capacity on R fibers is λ · n/4 wavelengths.

This further means that any n residual links coming from the same source
will carry at most λ · n/4 wavelengths. Since each fiber can carry at most λ
wavelengths, this means that given residual capacity can be compressed into:

λ · n
4 · 1

λ
=
n

4

Note that the theorem holds for residual wavelengths that have the same
source, as well as for those that have the same destination. This result allows
us to merge any four residual fibers with the same source/destination.

However, two additional challenges prevent us from minimizing the fiber
overhead by a factor of 4:

• Optical devices used to pack/unpack wavelengths from the fiber intro-
duce significant signal power loss. Thus, we can afford to have only one
wavelength switching device per path.

• Two or more residual fibers can be combined only if they share a subpath
from the source / to the destination. For instance, in a distributed
network with many direct connections, little fiber can be saved because
only a few paths share a subpath.

Note that the devices used for packing and unpacking wavelengths have to
be active and dynamic because there are different combinations of residual
capacity that these devices have to handle. These combinations change over
time, depending on the traffic matrix.

The remaining step in designing a hybrid network is to decide if and where
residual fiber links will be aggregated. This problem has similar properties
to amplifier placement and cut-through link placement, so we take a similar
approach. We compute all possible placements for wavelength switching
devices. We give each solution a score based on the potential fiber saving,
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pick the location with the highest score, place the devices, and repeat this
process as long as any fiber saving can be achieved. In our test scenarios, this
approach managed to reduce the residual fiber overhead by approximately
50%, which brings some cost reductions, as describe in in the following section.
Still, this is not enough to justify the complexity of managing a network with
one more type of devices at the current prices. However, we envision that this
hybrid design could be the first step toward a more sophisticated solution
with less fiber overhead.

3.7 Evaluation

Iris, by design, meets the constraints specified in §2.3. In §2.2, we further
demonstrated its latency and flexibility improvements over the centralized
approach in real settings. We thus evaluate three aspects that bridge any po-
tential gap between the system’s abstract design and its practical realization:
(a) cost; (b) physical layer feasibility; and (c) impact of circuit switching
under fluctuating traffic.

3.7.1 Cost analysis on real fiber maps

We use 10 real region fiber maps with a randomized placement of n ∈
{5, 10, 15, 20} DCs across each map: the first DC is placed uniformly at
random in the service area, and each successive DC is placed randomly (in
the more restricted service area given reach from already placed DCs) with
the probability of a candidate location being inversely proportional to its
distance from the nearest already placed DC. In line with typical values [54],
we vary DC capacities in terms of number of fibers, f ∈ {8, 16, 32}, where
each fiber translates to λ transceivers per fiber, with λ ∈ {40, 64}. For each
of the 240 combinations of these inputs, we calculate the cost of Iris, and
equivalent EPS (§3.3) and hybrid networks (§3.6). We account for all network
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Fig. 3.5: Iris is substantially cheaper: (a) Relative cost of Iris, EPS, and hybrid
networks across all 240 scenarios. (b) Same as (a) but with DCI
transceiver cost assumed (unrealistically optimistically) equal to SR
transceivers. (c) EPS uses many more in-network ports, as shown by
the ratio of in-network to DC ports across designs. (d) Relative cost of
an EPS supporting no failures vs. Iris, which handles up to 2 failures.

components with appropriate price amortization (§2.3.3), and the number of
ports per hut can be accommodated with today’s OSSes.

Fig. 3.5(a) shows the resulting cost comparison in relative terms: in 80%
of the examined scenarios, the EPS network is ≥ 5× more expensive than
the Iris and hybrid networks. Further, the virtually identical costs of the
latter two justify Iris choice of simpler fiber switching. This analysis includes
the transceivers within the DCs, which are fixed across the design space. A
sharper contrast between the design choices is revealed when we exclude this
fixed cost and only evaluate in-network components. Iris cost is then 10×
lower for 80% of the scenarios (the “in-network” line in Fig. 3.5(a)).
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We also emphasize that these cost differences are not ephemeral. The
involved components are all commoditized and high-volume, so we believe
this analysis to be fair. Nevertheless, to emphasize the disparity between Iris
and alternatives, we also examine the potential impact, were DCI transceiver
prices to drop (unrealistically) to those of short reach transceivers (presently
used for sub-2 km). Fig. 3.5(b) shows that Iris would still have a substantial
cost advantage. The reason is the number of ports (optical or electrical)
needed in different systems: as Fig. 3.5(c) shows, an EPS fabric requires many
times more ports in-network than Iris.

Finally, per Fig. 3.5(d), Iris, which guarantees capacity under up to two
failures, is cheaper (by >2× across all scenarios) than even an EPS with no
guarantees under failures.

3.7.2 Physical layer feasibility

Fig. 3.6 shows our testbed implementation of Iris, which uses all the compo-
nents described in §3.5: Multiple fiber spools 5 km to 50 km in length, that
allow us to model any regional distance at a granularity of 5 km; Erbium-
doped fiber amplifiers from Ciena; OSSes from Polatis, which also provide
per-port power-limiting functionality, arranged to model DC OSSes as well as
two fiber huts; WSSes from Finisar used to mux/demux wavelengths; Channel
emulator from BKtel to fill unused spectrum; 4 Acacia tunable transceivers
(2xAC400, 2xAC200) that can support varying baud-rates, modulation for-
mats, channel grid spacing, etc. These are not switch-pluggable but controlled
via evaluation boards, allowing us fine-grained config to emulate the 400ZR
specification.

We have also implemented a software controller (in Python, ≈ 9K LoC) to
control the optical devices through a multitude of interfaces (serial port,
HTTPS, and NetConf/REST). Our controller implements APIs for all op-
erations of Iris optical layer, namely channel add/drop, reconfiguration of
space switches, checking that the devices are in the expected state, etc. Our
present testbed evaluation focuses on physical layer feasibility, which then
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Fig. 3.6: A small Iris testbed with all the optical components.

guides our large-scale simulations. Unfortunately, given that our transceivers
are controlled through evaluation boards instead of real switches, we cannot
run a full control-to-bits evaluation at this time.

Our experimental set-up is shown in Fig. 3.7 and matches the description
in §3.5.2. We emulate 3 DCs, one sending traffic to the other two, over
two distinct paths of 4 fiber spans in total. We switch the two paths at
an intermediate hut. Our high-level description below is targeted at most
networking readers, with details for optics experts in Appendix A.1.

We generate 4 optical signals at two different wavelengths together with
ASE noise to fill the C-band spectrum in DC1. This traffic is fed into 2 fibers,
each carrying the 2 different wavelengths, muxed through the OSS/WSS.
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Fig. 3.7: Fiber switching experimental set up. Insets: Examples of fully loaded
spectra and constellation diagrams following the expected shape of
dual polarization 16-QAM signals as measured at different points in
the system (details in Appendinx A.1).

The two fiber spans of 20 and 60 km from DC1 terminate at the hut. The
following fiber spans from the hut are 60 km (to DC2) and 10 km (DC3).
The experiment periodically swaps which spans are connected, producing two
combinations A(60-60, 20-10) and B(20-60, 60-10). For both configurations,
the shorter distances do not need amplification, while the hut amplifier is used
for the two longer ones. Thus, over time, both DC-DC paths interchangeably
utilize the hut amplifier.

This setup tests each piece of our architecture.

Power management. We measure the full spectrum at uniform power at
input/output DCs. Our amplifiers work as desired, not causing any power
variations after transmissions of varying lengths with occasional in-line am-
plification.

BER and reconfiguration. Fig. 3.8 shows the maximum bit-error rate
(BER) before FEC at two of the receivers as we reconfigure every minute. Re-
sults collected over multiple day-long runs are similar. The received pre-FEC
BERs are well below the soft decision FEC threshold (2x10−2), translating in
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Fig. 3.8: BER over time while reconfiguration occurs (inset).

final BERs below 10−15; this is similar to equivalent static optical links. As
discussed in §3.5.2, no live traffic will be carried by paths during reconfigura-
tion. We performed similar experiments involving reconfiguration across two
independent huts with similarly consistent BERs and maximum switching
time of 70 ms.

3.7.3 Impact of network reconfiguration

Iris uses reconfiguration to respond to failures and (slow) changes in DC-DC
traffic. To study how this may impact application performance, we perform
region-scale flow-based simulations in a custom simulator. The topologies
examined reflect the DC connectivity and scale of the regions analyzed
in §3.7.1. Note that we drain links before reconfiguration, so transport loss
is not a concern. Our experiments thus focus on the impact of capacity
reduction during reconfiguration, where a fiber switch takes 70 ms (§3.7.2).

At high traffic aggregation levels as for DC-DC traffic, we expect traffic
to be stable over longer time scales. Based on experience, we use heavy-
tailed traffic between DCs, with a few pairs exchanging most of the traffic;
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Fig. 3.9: Slowdown under reconfiguration (ratio of 99th-%ile FCT for Iris vs.
EPS). Even at high utilization (70%) and large changes (>50%), slow-
down is minimal for reasonable frequencies of reconfiguration.

unbounded changes in traffic patterns occur when, e.g., a low-traffic DC-
DC pair becomes a high-traffic one. Otherwise, we bound the changes to
a maximum % value. We study a broad swath of operating conditions: (a)
network utilization in {10%, 40%, 70%}; (b) reconfig frequency of once every
1-30 sec; (c) changes of {1%, 10%, 50%, 100%, unbounded} in DC-DC traffic;
and (d) several distributions for flow sizes [11], [37]. Note that these tests
include extremes well beyond those we expect to encounter, e.g., DC-DC
aggregate traffic changing by up to 50% every 1 sec. Extreme DC-DC traffic
volatility at the granularity of seconds would not be expected. Similarly, we
chose to examine flow distributions that reflect intra-DC workloads dominated
by short flows. This serves as a stress-test for a circuit-switched network —
such flows would be the ones most affected by link reconfiguration, as longer
flows are throughput and not latency-sensitive.

We compare the Flow Completion Times (FCTs) for Iris to an EPS fabric
baseline. Fig. 3.9 highlights the increase in the 99th percentile of FCT across
some of our tested parameters, including the most extreme. As the results
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Fig. 3.10: 99th-percentile slowdown at 40% util., 50% traffic changes, and re-
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rest from [11]. Iris’s slowdown is <2% compared to EPS.

show, with the exception of unbounded intensity changes at high utilization,
the effect is minimal, especially for reconfiguration intervals of 10 sec or
above. For shorter intervals, there is a maximum slowdown of 2% across all
flows at the 99th percentile with Iris compared to EPS. This is true across
all workloads examined.

Fig. 3.10 similarly shows that this is the case across all tested flow size
distributions.

These results are largely expected: the probability of a short flow (<50KB)
being affected is small given the reconfiguration interval is much larger than
short flow completion times; meanwhile, large throughput dependent flows
see only a brief, negligible drop in throughput.

3.8 Related systems

For completeness, here we provide a brief overview of related systems and
approaches in domains other than data center interconnect architectures.
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Cloud WAN networks, like Iris, interconnect small numbers of sites. How-
ever, long-distance WAN links are much more expensive than regional fiber.
This results in WAN proposals like OWAN [76], SWAN [39], and B4 [85],
optimizing towards maximum utilization of WAN links. Iris design philosophy
is the opposite: exploit the cheap, abundant fiber of metro areas to design a
simple and cost-effective network. Further, while wavelength switching, as is
often used in metro optical networks [86], would improve spectral efficiency,
in DCIs we find this to be unnecessarily complex.

Intra-DC networks using optics are also well-studied. Early efforts in this
direction used OSSes [75], [87], while newer work is attempting to tackle
frequently changing intra-DC traffic at microsecond scale [88], [89]. Iris, only
needs to address slow-changing aggregate DC-DC traffic, but additionally
tackle power and signal quality constraints stemming from the longer link
distances. These constraints lead to completely different design choices.

Lastly, we note that DCIs are a hot industry topic [90], especially at the
lowest layers, e.g., customizing optical components [91], [92], and defining
DCI standards [14]. This work fits within current ways of interconnecting
these components, like the centralized and distributed models and their
implementations discussed in §2.

3.9 Iris limitations

By reducing the cost by an order of magnitude compared to equivalent EPS
architectures. However, there is more to be done before Iris is ready to be
deployed in production data centers. First and foremost, cloud providers and
their staff do not have sufficient experience in managing and maintaining all-
optical networks. Systems and applications developed for traffic monitoring
and failure detection must be adjusted or even completely redesigned to
be compatible with the new optical environments. Resolving performance
issues and congestion, dealing with hardware gray failures, and reasoning
about the network in general will require substantial training for network
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administrators as well as development of new subsystem and techniques that
will allow them to have better control over the optical network.

Another potential problem with Iris is that it relies only on the historical
workload specifications and insights about DC-to-DC traffic stability. Even
though by looking at history of execution of cloud workloads and their
communication patterns today, we observe that the traffic is stable at DC-
to-DC level, there is no strict guarantee that the traffic remain stable in
the future. Massive synchronized µ-second scale bursts could still happen in
the future and have negative influence on network performance due to the
reconfiguration process. To mitigate this challenge, we should work on systems
that obtain workload specifications about future behavior and integrate those
predictions with coarse-grained workload specifications to reconfigure the
network ahead of time. We describe one such system in the following chapter.

Although all-optical network need more time and development to reach the
maturity level of today’s EPS architectures, we believe that their simplicity,
low cost, and performance will force cloud providers to invest time and effort
in deploying them due to highly-competitive cloud market and the constant
need for cheaper and more performant cloud resources.

3.10 Summary

Motivated by the growing popularity of multi-data center regions, we study
architectures for regional data-center networks and highlight their trade-
offs. We find that while distributed networks offer attractive latency and
siting flexibility benefits, their implementation with today’s de-facto packet-
switching design also engenders greater cost and complexity. To simplify DCI
network design and lower the barriers for distributed networks, Iris introduces
an all-optical network core. With Iris, data travels between DCs entirely in
the optical domain, thus greatly reducing the number of in-network ports. Iris
simple fiber-level circuit switching only requires a minimal control plane, and
off-the-shelf optical equipment, as our testbed implementation demonstrates.
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Although dynamic reconfigurations of the Iris network are necessary due to
changes in traffic patterns, their negative effects are mitigated thanks to the
observation about traffic stability at the DC-to-DC level.





4
ADVANCE KNOWLEDGE OF
FLOW SIZES

So far, we have been looking at how to leverage historical knowledge about
network traffic in modern data centers to improve the efficiency of cloud
network infrastructure. Even simple insights like the one the data center
traffic does not frequently change between the pairs of data centers helped us
achieve an order of magnitude improvement in terms of infrastructure cost.

Intuitively, if we had more knowledge about network traffic, especially
information about future network behavior, we could apply more sophisticated
scheduling and control algorithms to maximize network performance. This
chapter explores the other extreme of the workload specification spectrum
– having fine-grained knowledge about future network events. In particular,
we are interested in predicting fine-grained characteristics of future network
traffic and how that knowledge could be used to improve network efficiency.

Outline Section 4.1 gives a brief overview of fine-grained network workload
specifications. Section 4.2 discusses an old dilemma in networking – on
whether or not such advance knowledge is even possible. Section 4.3 gives
an overview of techniques that can be used for obtaining advance network
knowledge in the modern cloud environment, while sections 4.4 to 4.8 provide
more details on each of those techniques.
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4.1 Background

When users transfer a file, send or receive an email, or access a web page,
they want their transaction to complete in the shortest time possible. Such
transactions are called network flows. A flow is a finite and continuous1

sequence of bytes that is exchange between a sender and a receiver.

One of the key goals of cloud network operators is to minimize flow com-
pletion time and provide congestion-free experience to cloud applications [93].
To achieve this goal, advance knowledge of future events in a network can
be of great help. Such knowledge could potentially benefit many aspects of
data center networks, including routing and flow scheduling, circuit switching,
packet scheduling in switch queues, and transport protocols. Indeed, past
work on each of the above topics has explored this, and in many cases, claimed
significant improvements [37], [38], [94]–[96].

Nevertheless, little of this work has achieved deployment. Modern de-
ployments primarily use techniques that do not depend on knowing traffic
features in advance, such as shortest path routing with randomization and
first-in-first-out queueing. A significant barrier to the adoption of traffic-aware
scheduling is that traffic features can be challenging to ascertain in a timely
fashion with adequate accuracy in practice.

Four high-level types of fine-grained advance workload specifications can
be obtained in the context of network traffic:

• Flow start time - knowing when a new network flow will start would
allow cloud providers to make changes in the infrastructure in order
to prepare it better for the incoming traffic, e.g., reconfigure dynamic
links [30], [31], [48]. However, it has been shown that flow start time is
challenging to predict with high accuracy due to many sources of noise
and interference that exist in the cloud [97], e.g., OS scheduler, access
to shared resources, disk latency, etc.

1 Continuous sequence of bytes - no breaks or pauses in time during the transfer.
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• Flow size - knowing how much data a particular flow carries in advance
would enable sophisticated scheduling techniques like prioritization of
short flows or fine-grained bandwidth allocation.

• Flow destination - knowing where network traffic will go in the future
can be important for similar reasons – applying early actions to change
network configuration and improve efficiency. However, this information
is not particularly useful before we know when the flow starts or how
much data will the following flow carry.

• Flow importance - Ideally, cloud providers would like to know how
important is a particular flow for achieving application-level goals so that
more important flows receive higher priority. To have perfect knowledge
of the importance of a specific flow, user intervention is necessary. Users
would need to modify their applications and communicate application
goals automatically through a pre-defined API. However, this is not
necessary for obtaining some knowledge about future importance, and
previous work has explored how to identify dependencies and importance
across flows automatically for distributed cloud workloads [98].

Out of those four, flow size information is the one that has the most
applications and systems that are developed while having the assumption of
knowing the flow size in advance. Yet, this information is not available in
today’s cloud. Thus, we focus on the plausibility and utility of obtaining flow
size information in advance for use in the packet, flow, and coflow scheduling
in data centers. Since cloud workloads are commonly repetitive, we first
learn the behavior of a workload from past execution traces using machine
learning techniques, and then predict flow size based on the current state of
the workload.

We thus examine a wide array of possibilities for estimating flow sizes
in advance, including modifications to the application-system interface for
explicit signaling by the application and more broadly applicable application-
agnostic methods, ranging from simple heuristics like reading buffer occupancy
and monitoring system calls to sophisticated machine learning. We analyze
the complexity, accuracy, and timeliness of different approaches and the
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utility of the (often imprecise) flow size information gleaned by these methods
across various network scheduling techniques.

4.2 Knowing flow sizes - easy or difficult?

Many scheduling techniques for data center networks have been proposed,
promising substantial performance gains:

• PDQ [99] and D3 [100] schedule flows across the fabric, in a “shortest
flow first” manner.

• pFabric [37] and EPN [101] schedule packets at switch queues using
“least remaining flow” prioritization.

• pHost [94], Homa [96], and FastPass [38] schedule sets of packets across
the network.

• Orchestra [102], Varys [42], Sincronia [95], and Baraat [103] schedule
coflows (app-level aggregates).

• c-Through [104], Helios [75], and several followup proposals schedule
flows along time-varying circuits.

All of these proposals are clairvoyant schedulers, i.e., they assume that the
size of a flow is known when it starts. Some of this work has made this
assumption explicit:

“In many data center applications flow sizes or deadlines are known at
initiation time and can be conveyed to the network stack (e.g., through a
socket API) ...”

— Alizadeh et al. [37], 2013

“The sender must specify the size of a message when presenting its first
byte to the transport ...”
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— Montazeri et al. [96], 2018

There is not, however, consensus on the availability of such information; work
in the years intervening the above two proposals has argued the opposite.
For instance:

“... for many applications, such information is difficult to obtain, and
may even be unavailable.”

— Bai et al. [105], 2015

Thus, we explore if the flow size information is easily obtainable in advance.
In particular we would like to know what are the techniques for obtaining
flow size information, what is the accuracy of each of these techniques, and
how valuable those estimates are when in comes to scheduling and improving
network efficiency.

4.3 Flow size estimation: design space

Flow size definition Before considering flow size estimation, it is necessary
to define a flow. The primary goal of flow size estimation is to improve appli-
cation performance using network scheduling. Where application messages
directly translate to individual TCP connections, using TCP 5-tuples to
define flows suffices. However, to avoid the overheads of connection setup and
TCP slow start, it is common practice in many data centers to use persistent
long-lived TCP connections (e.g., between Web servers and caches) which
carry multiple application messages over time. In these settings, it may be
more appropriate to consider instead a series of packets between two hosts
that are separated from other packet series by a suitable time gap. We note
that this is an imprecise method, as system-level variability and workload
effects can impair such identification of flows. For instance, multiple small
cache responses sent out in quick succession could be mistakenly identified as
one flow. This limitation applies to all application-oblivious methods — in
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some scenarios, mechanisms to identify packets that form an application-level
message are inherently bound to be imprecise.

We next describe five approaches for obtaining flow sizes:

• Flow-size reporting API - building an interface that allows cloud appli-
cations to automatically report their flow size.

• Flow aging - using a heuristic that approximates flow size based on the
number of bytes that this particular flow has already sent.

• TCP buffer occupancy - amount of data currently placed in the sending
buffer gives us a lower bound on the remaining flow size.

• System call monitoring - applications move data from user space to
TCP buffer using particular system calls. The size of those transfers
can be used to estimate flow size.

• Applying machine learning - An obvious, but the most sophisticated
approach is using various ML techniques that predict flow size based
on system and application parameters.

Also, the following sections provide intuitive reasons about the efficacy of
these techniques in various settings. Experimental evaluations of the quality
of estimation and its impact on network scheduling are deferred to §5.4.

4.4 Exact sizes provided by application

Many applications can assess how much data they want to send, such as
standard Web servers, RPC libraries, and file servers. Modifying such appli-
cations to notify the network of a message’s size is thus plausible. This would
require a new interface between applications and the network stack, and is
clearly doable, but not trivial. The replacement must be interruptible, like
send in Linux, and it’s unclear how best to implement this – what happens
when it gets interrupted after sending some bytes? When a new call is made
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to finish the transfer, how do we decide whether or not this is the same flow?
Thus, this may also require introducing some notion of flow identifiers. While
this can surely be done, we merely point out that it requires care.

Limitations: As discussed in some depth in prior work [105], there are
several scenarios where the application itself is unaware of the final flow
size when it starts sending out data, such as for chunked HTTP transfers,
streaming applications, and database queries where partial results can be
sent out before completion. Also, apart from introducing changes to the host
network stack (which are not necessarily prohibitive for private data centers),
this approach requires modifying a large number of applications to use the
new API. In settings like the public cloud, this may not be feasible.

Still, this approach should not be casually dismissed; a few software pack-
ages dominate the vast majority of deployed applications, e.g., a large fraction
of Web servers use one of the three most popular server software packages,
most data analytics tasks use one of a small number of leading frameworks,
etc. Past work (e.g., FlowProphet [106] and HadoopWatch [107]) has in
fact explored the use framework-internals for gleaning flow sizes. Thus, this
approach could make flow size information accessible to the network for many
applications, provided the right APIs are developed.

4.5 Flow aging

A set of application-agnostic techniques have been proposed around the idea
of using the number of bytes a flow has already sent as an estimator for
its pending data. For instance, Least Attained Service (LAS) [108] gives
the highest priority to new flows and then decreases their priority as they
send more data. Thus, flow priorities “age” over time. PIAS [105] explores
a variant of this approach, coupling it with the use of a small number of
discrete queues to fit commodity switches. Aalo [43] applies similar ideas to
coflow scheduling.
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Limitations: The most significant drawback is that this approach may
not benefit scheduling techniques that require absolute flow sizes (as opposed
to only relative priorities), such as Sincronia [95]2, FastPass [38] and optical
circuit scheduling. Even where applicable, the effectiveness of such methods
depends on flow size distribution. For instance, LAS does not work well when
there are a large number of flows of similar size. In the limiting case, if all
flows are the same size, older flows nearer to completion are deprioritized,
which is the opposite of the desired scheduling. More sophisticated methods
based on multi-level feedback queues [105] still depend on estimating a
stable underlying flow size distribution3. Further, even in favorable settings,
with stable heavy-tailed flow size distributions, the performance of such
application-agnostic techniques can be substantially lower than clairvoyant
ones. For instance, recent work [96] reports ∼ 2× difference in 99th percentile
slowdown between PIAS [105] and pFabric [37]. Similarly, Sincronia [95], the
best-known clairvoyant coflow scheduler, claims a 2− 8× advantage over
Varys, and by extension, over CODA [98], the best-known non-clairvoyant
coflow scheduler. (Note however, that the scheduling knowledge involved
in CODA is not limited to flow sizes, but also classification of flows into
coflows.)

4.6 TCP buffer occupancy

The occupancy of the TCP send buffer at the sending host can provide
approximate information on flow sizes. When the buffer occupancy is small,
the number of packets in the buffer may be the actual flow size of a small
flow. When the buffer is fully occupied, i.e., its draining rate is less than its
filling rate, the flow may be categorized as a large flow. Mahout [110] and
c-Through [104] used roughly this approach. ADS [111] also suggests (but

2 Sincronia uses only relative priorities in the network, but for assigning these priorities, it
computes the bottleneck port using sizes of all flows destined to each port. It is unclear if
aging would be effective here.

3 Alternatively, additional effort must be spent in continuously monitoring and following
the changes in the underlying distribution [109].
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Fig. 4.1: Buffer occupancy while transferring a 1GB static file from the hard
disk over 1G and 10G connections. We show a representative 10 ms
segment of the trace starting at 1 second.

does not evaluate) a similar mechanism, although it is unclear whether it
uses system calls, or buffer occupancy, or both.

Limitations: Buffering reflects flow size only when the sender is network
or destination limited. If the bottleneck is elsewhere, the buffer may not be
filled even by a large flow. Consider a program that reads a large file from
the disk and sends it over the network. The program reads data in chunks of
a certain size (e.g., 100 KB) and sends as follows:

while(...):
read(file_desc, read_buffer, 100KB)
write(socket_desc, read_buffer, 100KB)

Today’s SSDs achieve a read throughput of ∼6 Gbps, while NIC bandwidths
of 10-40 Gbps are common. This disparity implies that the buffer may remain
sparsely populated most of the time. To illustrate this behavior, we ran a
simple experiment. We transfer a 1GB static file served by a Web server over
1G and 10G connections (Fig.4.1). The file is stored on a regular 7200 RPM
hard drive with the maximum read speed of ∼ 1 Gbps. We see that for the
faster connection, the buffer is almost empty. For slow connections, the buffer
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indicates the lower bound of the flow size, but when the buffer occupancy
starts decreasing, it is unclear if that means that no additional data will be
added. This presents a serious obstacle for flow size estimation.

4.7 Monitoring system calls

The write/send system calls from an application to the kernel provide
information on the amount of data the application wants to send. The flow
size is typically greater or equal to the number of bytes in the first system
call of a flow. It is also interesting to notice that many applications have a
standard system call length. For instance, Apache Tomcat by default transfers
data in chunks of 8 KB. If it wants to send less than 8 KB, it issues a single
system call which reflects the exact flow size. For larger flows, multiple calls
are, of course, necessary. Other applications behave similarly; MySQL uses
chunks of 16 KB, Spark Standalone 100 KB, and YARN 262 KB. Thus, for
identifying short flows, this is a reliable approach, and can directly enable
algorithms like Homa [96]. Further, recent work from Facebook suggests that
a substantial portion of flows is extremely small and most likely transferred
over a single system call [112].

To test this approach, we run a simple experiment where we store 100,000
objects of sizes between 500 B to 1 KB using MySQL. Further, we execute
three types of queries: fetch an object based on the key, fetch a range of 10
objects using a date index, and fetch 1000 objects (e.g., to perform a join
operation or backup). Since results for queries fetching 1 and 10 objects fit
into the initial system call, we were, in fact, able to obtain their flow sizes
accurately.

Limitations: The flow size information inferred from system calls may
correspond to only a part of the flow rather than the whole flow, as in the
above example for large queries. Increasing the size of the initial system call
could work, but larger system calls require more buffer memory per connection.
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Thus, Web servers, databases, and other highly concurrent programs tend to
keep system calls small.

4.8 Learning from past traces

We can also apply machine learning to infer flow size information from system
traces. Ultimately, data sent out to the network trace causality to some
data received read from disk or memory, or generated through computation.
Thus, traces of these activities may allow learning network flow sizes. Given
that most jobs in data centers today are repetitive, there is a significant
opportunity for such learning. For instance, in [113], the authors observed
that more than 60% jobs in enterprise clusters are periodic with predictable
resource usage patterns. Analysis of publicly available Google data center
traces also confirms this finding: most of the resources are consumed by
long-term workloads [114]–[116].

Unlike the simpler approaches above, the effectiveness and limitations of
learning methods are hard to analyze without a serious attempt at building
a learning system. A key challenge here is the short timescale: while past
work [117], [118] has explored learning workload characteristics at timescales
of minutes and hours, can we learn at the microsecond timescales necessary
for flow size estimation? This represents a challenging leap across 8-10 orders
of magnitude in timescales. We next detail our efforts towards building a
learning system for flow size prediction.

4.9 Summary

Many scheduling and network control systems that have been proposed by
the academic community promise substantial performance improvements by
leveraging advance flow size information. However, none of them achieved a
broad adoption in practical deployments, because the flow size information
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is not available in the cloud environment. For some workloads, having that
information is fundamentally impossible, e.g., streaming applications. In
contrast, for others, this problem requires careful analysis and substantial
investment in terms of time and effort in modifying existing applications or
creating new systems that obtain flow size knowledge in advance. We propose
one such system in the following chapter.



5
LEARNING FLOW SIZES

As we demonstrated, even simple heuristics effectively estimate flow sizes
in situations where flows are relatively small. However, to unlock the full
potential of sophisticated network scheduling and control algorithms, we need
to provide more accurate information. This can be achieved by deploying
machine learning systems to help cloud providers automatically obtain flow-
size information.

In this chapter, we present Flux , a system that leverages modern machine
learning techniques to estimate the size of the upcoming flow by looking at
the history of execution of a particular job as well as system-level parameters
like resource utilization, TCP buffer occupancy, and system calls.

Besides providing high accuracy of the flow size estimates, we are also
interested in obtaining the estimates in a timely, low-overhead manner. Also,
we want to understand how flow size information may be used to improve
different aspects of network performance and efficiency and how the inaccuracy
of flow size estimates impacts the performance of the network.

Outline Section 5.1 describes several machine learning techniques that we
tested for obtaining flow size information. Next, section 5.2 gives a more
profound intuition and explanation about how and why machine learning
techniques work in this setting. Section 5.3 explains how those predictions
can be used to improve the efficiency of cloud networks, while in Section 5.4,
we evaluate those techniques with our flow size predictions against multiple
workloads. Then, Section 5.5 and Section 5.6 discuss the implementation
of Flux and how to deploy it in the cloud environment to obtain flow size
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predictions with low latency. Finally, Section 5.7 discusses the limitations of
our learning approach.

5.1 Introduction to learning flow sizes

We explore the design of a learning-based approach for flow size estimation,
addressing the following questions:

• Which methods can we use for flow size prediction?

• What prediction accuracy is achievable?

Learning task: We would like to learn flow sizes for outgoing flows in
advance, using system traces. When a flow f starts, are recent measurements
of network, disk, memory I/O, CPU utilization, etc. predictive of f ’s size?

To answer this question, we first introduced the representative cloud
workload we analyzed, and then we focus on machine learning techniques
that leverage historical execution traces from those workloads to predict flow
size.

5.1.1 Workloads

To explore what inputs are predictive of flow sizes, it is essential to gather
job execution traces with as much detail as possible, across many instances of
jobs with variable inputs and configurations. Unfortunately, publicly available
data center traces do not contain enough information. Facebook’s traces [11],
by sampling 1 per 30000 packets, provide no visibility at the flow granularity.
Google’s traces [119] completely omit network data, focusing on CPU, memory
utilization, etc. We thus collect traces for (a) a large range of synthetic
workloads; and (b) machine learning applications running on our university
clusters.
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Our traces comprise 5 applications: PageRank, K-Means, and Stochastic
Gradient Descent (SGD) implemented on Spark; training deep neural net-
works using TensorFlow; and a Web workload. The SGD and Tensorflow
traces are from instrumented applications running on our university cluster.

Each of SGD, KMeans, and PageRank runs on a Spark cluster of 8 machines,
each machine with 2 CPU sockets (4 cores each) and 24 GB DRAM. For
SGD, the input sizes vary from 2-25 GB, with significant variation across
the hyperparameters. We also impose large input variations for KMeans and
PageRank: for PageRank, we randomly generate new graphs with 1-15 million
nodes; and for KMeans, we generate datasets with 20-50 million points, while
also varying K. We also vary the number of workers per job from 8 to 64.

The Tensorflow trace consists of one 25 minute long execution of distributed
training of AlexNet [120] on the ImageNet dataset on 40 GPU machines.

For the synthetic Web workload, we use Apache Tomcat 7.0 to host a full
Wikipedia mirror and fetch random pages.

Fig. 5.1 summarizes these workloads. Fig. 5.1(a) shows the job execution
times across different executions for each algorithm. Execution times for
KMeans, PageRank, and SGD vary by factors of as much as 2.6×, 1.5×,
and 24.5× respectively. Thus, there is substantial variation across executions.
The main source of the variations across traces is the change in the size of
the input data and the number of iterations. However, for many runs there
were more resources in the cluster than required by the job, leading traces to
further incorporate the influence of Spark’s scheduling decisions.

We also aggregate flow statistics across all jobs and executions for each
application to give a sense of the traffic; Fig. 5.1(b) shows the flow size
distributions, and Fig. 5.1(c) shows the arrival rates (aggregated across the
workers). The TensorFlow workload consists of many short flows with an
average arrival rate of 8273 flows/second.
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Fig. 5.1: Workload diversity: (a) Execution time varies substantially across
executions of the same job. We also show the distribution of (b) flow
sizes and (c) flow arrival rate across our workloads.

5.1.2 Machine learning models

We evaluate several ML models, but with only modest efforts to optimize
these, because our goal is not to identify the best model or hyperparameters,
but to show that a variety of methods could work (as we show with results
on improvements in scheduling in §5.4) with reasonable effort, modulo the
limitations of learning in this context, as discussed in §5.7.

Recurrent Neural Network with LSTM layers: All our traces are
time series. Given the natural dependency between data points in the trace
(past flows influence the creation of the current flow), we test a network
that can keep state and learn these dependencies while processing the trace
sequentially. For this purpose, we use an LSTM model [121]. Using Keras [122]
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GBDT FFNN LSTM

Web server 94 | 96 92 | 94 73 | 74

TensorFlow 97 | 97 95 | 95 94 | 94

PageRank 85 | 83 84 | 84 83 | 83

Kmeans 88 | 90 88 | 95 88 | 93

SGD 58 | 79 54 | 72 46 | 0

Table 5.1: Prediction accuracy (shown for validation-set | test-set) across models
and workloads in terms of R2 percentage.

and Tensorflow [123], we test varied LSTM models with different numbers
of layers. The best configuration in our setting uses a single layer with 64
LSTM units.

Gradient Boosting Decision Trees: In many of our traces, simple condi-
tionals reveal information about the flow size. For instance, if the first system
call size is below a certain value, that can often reveal the flow’s size. Thus,
we train GBDT models of different sizes (i.e., numbers of trees) and find that
using 50 trees (with maximum depth of 10 per tree) gives fast yet accurate
results.

Feed-Forward Neural Network: The dependency between flow size and
other system-level features should not strictly depend on the ML model we
choose. Thus, we test a standard FFNN model [124] with various configura-
tions for the number of layers and neurons, implemented using Keras [122].
We find that 2 layers (and the ReLU activation function) with 5 neurons
each yield the best performance.

Results: We split the traces into 3 fixed sets – training, validation, and
test. Table 5.1 compares the three tested models. We use the coefficient of
determination (R2) to measure accuracy. R2 is very useful because it can
be easily compared across different models: R2 = 1 if the model produces
perfect predictions, and R2 = 0 if the model makes a prediction of zero value,
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always predicting the mean. GBDT and FFNN achieve comparable accuracy
(Table 5.1), with the high values of R2 implying highly accurate flow size
predictions. For two workloads, LSTM gave inferior results and did not seem
to capture the dependencies, particularly across traces where the underlying
executions were very different (e.g., test-set for SGD). With greater effort,
for instance, specializing the model to these traces, it may be possible to
overcome LSTM’s apparent deficiency. However, we wanted to use the same
training and inference approach across traces.

GBDT’s accuracy, fast convergence, and fast inference motivate its choice
for Flux . The tradeoff is that the model updates in batch mode (not online);
this should suffice, unless applications change at sub-second timescales.

5.2 Opening the black box

What explains the high accuracy of our ML approach? We discuss the
predictive power of various system-level measurements, and detail refinements
that led from poor initial results to these high-accuracy predictions.

5.2.1 The treachery of time

We first tried what we considered a natural model for the data of our interest:
time series. To generate time series data, during the execution of each
workload, we sampled CPU and memory utilization, and disk and memory
I/O, every 20 ms, and recorded headers of all incoming and outgoing packets.
We then attempted to predict the next few time-steps for network traffic.
However, this gave poor results due to low-level system effects that can have
a significant impact on timing.

An alternative representation with a flow-centric view treats a job as a
series of flows, with several attributes recorded per flow (Table 5.2). This
is effective for flow size prediction, as it does not suffer from minor timing



5.2 opening the black box 89

variations, and captures the relationship between (for instance) system calls
and the volume of outgoing traffic. In addition, the measurements themselves
serve as a “clock”, one that is more robust to system scheduling artifacts.

Feature Description

Start time, tf
Start time of f relative to job start
time

Flow gap
Time since the end of the previous
flow

First Call Size of the first system call tf

Network In Data received until tf

Network Out Data sent until tf

Network In(d)
Data received at flow’s dest. d until
tf

Network
Out(d)

Data sent by this host to d until tf

CPU CPU cycles used until tf

Disk I/O Total disk I/O until tf

Memory I/O Total memory I/O until tf

Previous flows Flow sizes for last k flows

Table 5.2: Features of a flow f . All network, memory, disk and CPU activity is
cumulative until this flow’s start at tf .

5.2.2 Why these features?

New flows are created either by reading data from the disk or memory,
processing previously received flows, doing some computation to create data,
etc. Thus, features that characterize each of these causal factors could help
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estimate flow size. For each type of system measurement, we track the total
number of operations or bytes from the beginning of program execution. This
enables the learning algorithm to know how many operations or bytes were
processed between the last and the new flow. In our experiments, when we
predict the flow size, we use features from Table 5.2 for last 5 flows. Thus,
we try to catch dependencies between consecutive flows as well as resources
that have been consumed.

As expected, the most predictive features vary across applications. For
instance, some applications do not produce a lot of disk traffic, while others
rely completely on the disk. The GBDT model provides a natural way
of assessing feature importance: it uses a set of decision trees, with each
attribute’s contribution measured in terms of “splits”, i.e., in what percentage
of branch conditions in the decision tree the attribute appears. Fig. 5.2 shows
these splits for the aggregated flow-centric traces from a Spark environment.
Interestingly, for these traces, we find that similar accuracy can be obtained
by a model constrained to not use memory, disk, and CPU monitoring, relying
only on network data and timing of flows. Web queries, on the other hand,
have a different set of critical features where 66% of all splits use disk I/O.

Finding the best model and feature-set may require manual work, but
effective solutions could be obtained automatically by comparing the accuracy
of the largest model to the accuracy of candidate models limited to using
only the first model’s most salient features.

5.2.3 Model accuracy

The accuracy of predictions obtained using learning depends on three main
factors, which we discuss next.

How far the predicted future is: It is critical to make predictions within
a time budget. Since most flows in data centers are small, this budget is
commensurately small: if the inference takes too long, we might either block
on the inference and slow down the flow, or allow packets to flow without
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Fig. 5.2: Feature contributions for 2 models for the Spark workloads, measured
using GBDT splits. The figure omits labels for the less important
features: memory and CPU utilization, and disk and memory I/O.
Both models provide the same prediction accuracy. If we exclude any
of the top 3 contributors, the accuracy decreases.

having the result of the inference and without tagging them appropriately,
resulting in sub-optimal performance.

There are two possibilities for overcoming this issue: (a) when a new flow
starts, make a prediction in an extremely small time budget by engineering
down the inference time; and (b) when a new flow starts, start inference for
the next outgoing flow, or even more generally, for some future flow. This
choice represents a trade-off: we can either get high-accuracy inference by
incorporating the maximum information available for inference, but incurring
a data path latency to do so (or use results late, as they become available);
or get lower accuracy due to missing some relevant information from needing
to predict a farther future.

Fig.5.3 shows the dependence of prediction accuracy on this “future dis-
tance”, starting from trying to predict a flow’s size immediately when it
starts, through predicting the next several flows. For TensorFlow, predicting
several flows into the future is possible with high accuracy, because flows
are predictive of future flows. But as expected, for the Web server workload,
it is only possible to accurately predict the flow starting now, because two
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Fig. 5.3: Prediction accuracy declines for more distant flows. x = 0 is the current
flow, for which packets are starting to be sent out, while x = 1 is the
next flow after this one, and so on.

consecutive flows share no relationship (because we are requesting random
objects from a Wikipedia mirror) – in essence, each “job” is of size one.

Model size: Larger models often yield higher accuracy at the cost of more
memory and computation, and consequently, and more crucially, higher
latency for inference.

While details of the impact of model accuracy on scheduling performance
are deferred to §5.4, we use flow completion times instead of R2 to compare
model sizes.

For an example trace (pFabric scheduling for PageRank), when predicting
the current (next) flow’s size, the average FCT using a smaller model with 20
trees is worse by 9% (10%) than the larger model with 50 trees. Interestingly,
the larger model achieves better results than the smaller one, even when the
larger model is impaired by having to predict the next flow, while the smaller
model predicts the current flow.

Training dataset size: Obviously, the learning approach depends on having
seen enough training data, but this “convergence time” varies across workloads.
For the Web workload, the model only needs to observe ∼ 50 requests to
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achieve R2 > 0.5. To achieve nearly its maximum prediction accuracy, the
model needs to observe ∼ 500 requests. For a popular Web server, this is
on the order of a few seconds. (Of course, our model for a Web server is
extremely simple.

The model for TensorFlow needs to see ∼ 3000 flows to reach peak accuracy,
but given its flow arrival rate of more than 8200 flows per second, convergence
time is sub-second. This is negligible compared to the job duration itself
(∼ 25 min). The iterative nature of neural network training, with similar
traffic across iterations, allows accurate prediction within a few iterations of
monitoring a never-seen-before job. The Spark workloads show the highest
variability, and this is reflected in their convergence time. Here we need traces
from multiple executions of the same job type to achieve high accuracy;
10 executions suffice for each of our 3 test job types1. Fortunately, data
processing frameworks are often run repetitively with many instances of the
same job [113], [125] since the workloads often involve tasks like making daily
reports, code builds, backups or re-indexing data structures.

Note that good results can be achieved even across repeat executions with
very different underlying data and run configurations — the job instances
over which we train and test exhibit such variations, as discussed in §5.1.1.

5.3 Flow-size-based network scheduling

We explore the utility of advance knowledge in the context of four repre-
sentative scheduling techniques from past work: pFabric [37], pHost [94],
FastPass [38], and Sincronia [95]. Each of these is a clairvoyant scheduler,
with advance knowledge of the size of each flow at its start (but not necessarily
the flow arrival times).

Here we include brief, simplified background on the representative scheduling
techniques:

1 Each execution yields n traces, when n machines execute the job.
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pFabric [37]: Each packet is tagged with a priority at the end-host, based
on the remaining flow size. Switches then schedule packets in order of least
remaining size. This results in near-optimal packet scheduling and can improve
average flow completion time (FCT) by as much as 4× for certain workloads,
compared to the oblivious FIFO scheme.

pHost [94]: pHost uses distributed scheduling, with the source sending to
the destination a “Request To Send” message carrying the number of pending
bytes in the flow. The destination clears transmission for the flow with the
least bytes. pHost claims an average FCT reduction of 3×.

FastPass [38]: FastPass uses a centralized arbiter to schedule flows. When a
host wants to send data, it asks the arbiter to assign it a data transmission
time slot and path. The arbiter tries to make a decision based on the traffic
demand (flow size) of all active flows. FastPass claims “near-zero queuing”
on heavily loaded networks, cutting network RTT by 15×.

Sincronia [95]: Sincronia orders coflows using sizes of individual flows to
find network bottlenecks and uses this ordering for priority scheduling. It
achieves average coflow completion time (CCT) within 4× of the optimal.

If flow sizes were known a priori, such techniques could improve various
performance metrics of interest by 3-15× compared to size-unaware ECMP-
plus-FIFO scheduling. For some scheduling problems, where only relative
flow priorities matter rather than absolute sizes, prior work has developed
non-clairvoyant schedulers [43], [98], [105] that also beat the ECMP-FIFO
baseline. But as we shall see, their performance improvements are often much
more modest than clairvoyant schedulers.

For some problems, non-clairvoyant algorithms are also known, e.g., PIAS [105]
for packet scheduling, and Aalo [43] for coflow scheduling. While such tech-
niques outperform FIFO and fair-sharing baselines, there is still a substantial
performance gap compared to clairvoyant algorithms. Recent work [96] re-
ports ∼ 2× difference in 99th percentile slowdown between PIAS [105] and
pFabric [37]. Similarly, Sincronia [95], the best-known clairvoyant coflow
scheduler, claims a 2− 8× advantage over Varys, and by extension, over the
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best-known non-clairvoyant scheduler, CODA [98]. Further, it is unclear if
similar non-clairvoyant methods can be developed for scheduling problems
such as FastPass [38], where absolute flow sizes are needed, rather than just
the relative priorities leveraged by PIAS and Aalo.

5.4 Evaluation

Assessing accuracy of ML-based method in terms of mean error and R2 is
useful, but unsatisfactory — we ultimately want to understand the impact of
errors on scheduling that uses the estimates. We thus quantify the performance
of both flow-level (FastPass, pFabric, and pHost) and coflow-level (Sincronia)
schedulers with varying degrees of inaccuracy in flow sizes. Throughout this
evaluation, we use the same traces used for our validation and testing results
in §5.1. Also, we account on inference latency, that will be discussed in the
following section.

5.4.1 Flow-level scheduling

We use the YAPS simulator [126]. We use the leaf-spine topology used in
pFabric [37], with 4 spines, 9 racks, and 144 servers, with all network links
being 10 Gbps. To measure the effect of inaccurate predictions on flow
completion times (FCT), we replay the network traces collected from our
cluster in YAPS. Each experiment uses traces2 from one of the 5 job types.
We run all our tests at 60% network utilization, mirroring the original pFabric
and pHost papers.

We compare network performance across the following flow estimators: (0)
“Perfect”, an ideal predictor with zero error. (1) “Mean”, whereby every flow
size is predicted to be the mean. (2) “GBDT”, the gradient-boosting decision

2 Note that, unfortunately, we cannot provide results for flow size distributions often used
in data center research because we do not have the traces to produce the distribution of
estimation error for them.
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Fig. 5.4: Mean FCT across 4 scheduling techniques, 5 workloads, and several
flow size estimators.
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Due to the log-scale, small visual differences are significant. On the
right plot, Perfect and GBDT are visually indistinguishable, and so
are Aging and Oblivious.

tree learning approach with 50 trees. (3) Specifically for pFabric, we also
evaluate the 0-knowledge LAS policy – “Aging” (§4.5). Today’s commonly
deployed approach – FIFO scheduling at switches and ECMP forwarding –
is also evaluated as a baseline (“Oblivious”).

Fig. 5.4 shows the average FCT across all 5 workloads, 3 flow-level schedul-
ing techniques, and these flow estimators. Note that the Aging result is shown
only for pFabric, because it can be easily modified to use LAS.

Oblivious often results in mean FCT more than 2× that of Perfect, e.g.,
compared to FastPass across all workloads, and compared to pFabric in
Fig. 5.4(a) and 5.4(d); the largest gap is as large as 11.1×, vs. FastPass
in Fig. 5.4(a). GBDT achieves mean FCT close to Perfect across all cases,
with the largest gap being 1.21×, vs. FastPass in Fig. 5.4(f). Compared
to Oblivious, improvements with GBDT range from 1.1-11.1× across our
experiments.

Understanding the performance of these schemes requires a closer look
across the entire flow size distribution. Fig. 5.5 (left) shows the distribution
for one example – pFabric scheduling over an SGD trace, i.e., details behind
the mean FCTs for pFabric in Fig. 5.4(a). Note that the logarithmic x-axis in
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Fig. 5.5 visually suppresses significant differences. Aging indeed achieves good
results for the short flows for the SGD trace, but for longer flows, which share
the same priority for a long time, its performance is worse than Oblivious,
resulting in a larger mean FCT (Fig. 5.4(a)). The TensorFlow workload, with
most flows being short, presents a difficult scenario for Aging – as noted
in §4.5, for such workloads, Aging’s behavior is the opposite of desirable
(Fig. 5.5 (right)).

In contrast to Aging, GBDT’s performance is similar to Perfect across the
flow size spectrum for both workloads.

5.4.2 Coflow scheduling

We evaluate Sincronia, a recent proposal that leverages flow size information
to provide near-optimal coflow completion time (CCT), with our imprecise
flow size estimates.

We generate coflows from our traces by picking r consecutive flows grouped
together to create a coflow. For each coflow, r is chosen uniformly at random
from {1, 2, 3, . . . , 20}. For each of our five traces, we run 200 coflows with
Sincronia’s offline simulator at 60% network load. We execute experiments
for Perfect and GBDT, and record mean CCT. To measure the effect of
inaccurate predictions, we define relative performance degradation as GBDT-
CCT / Perfect-CCT.

Fig. 5.6 shows that the performance degradation for coflow scheduling for
PageRank, KMeans and SGD, is substantialy higher than for flow scheduling
algorithms. That is because errors in estimates for individual flow sizes
compound with coflows. This also explains why workloads with very high
accuracy for individual flow sizes, such as Web server and TensorFlow, are
only exposed to modest degradation.
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Fig. 5.6: Relative performance degradation for Sincronia expressed as the ratio
between mean CCT with imperfect estimates and perfect knowledge.

5.5 Design & Implementation

Being capable to obtain high-accuracy estimates of workload specifications,
in this case flow size information, is not sufficient to use those specification in
practice. These estimates must be available on time, with very short latency,
so that the inference latency does not degrade the performance of the entire
system and remove the benefits provided by those workload specifications in
the first place.

In this section, we provide more details on general Flux design, with focus
on minimizing the inference latency in different deployment environments.

5.5.1 Design overview

Our goal with Flux is to quickly and precisely estimate flow sizes at the sending
host, and tag each flow’s packets with this information. Fig. 5.7 shows an
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overview of Flux’s design, along with its data flow. Flux is composed of 4
modules:

• Data collection, which gathers system-level traces for information rele-
vant to flow size estimation.

• Learning, which uses these traces to train an inference model for flow
size estimation.

• Inference, which uses real-time system traces to estimate flow sizes.

• Packet tagging, which adds the flow estimates to the appropriate packet
headers or control messages for use in network scheduling.

The data collection, tagging and inference run on the data path at each
host, and must minimize latency. The learning module can be updated in
a batched manner, and run independently at a host or in a consolidated
manner for multiple (virtual or physical) machines.
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5.5.2 Flux implementation

We first describe an implementation of Flux in a controlled environment,
where we have the freedom to make changes across the operating system
hosting the applications, and later discuss generalizing this implementation
for other environments encountered in data centers.

Data collector: Our results in §5.2.2, reveal that the most predictive features
for flow sizes for our workloads are network and disk I/O and flow inter-arrival
times. The data collector thus logs these, while still keeping track of general
system utilization parameters (CPU, memory).

A simple way to log I/O in a low-overhead manner is to monitor the related
system calls. For example, the following two API calls are often used to send
or receive data to or from the network:

send(dest_id, from_buffer, num_bytes)
num_bytes receive(source_id, to_buffer)

Regardless of the OS or the network stack implementation, similar calls
with the same or similar parameters exist. When data is to be sent, it is
necessary to specify its destination (dest_id), where the data is to be sent
from (from_buffer), and how much data is to be sent (num_bytes). Likewise,
the receiver must know which sender sent the data (source_id), where the
data has been received (to_buffer), and how many bytes were received
(num_bytes). An RDMA stack, for instance, uses a different API, but with
equivalent information.

For the purpose of our experiments, to capture network I/O, we defined
wrappers for the following system calls from the standard glibc library: write,
send, sendto, sendfile, sendmsg, read, recv, recvfrom, and recvmsg. We then
used ld_preload to load our wrappers, thus overriding glibc; this is a standard
Linux feature. The wrappers are thin and low-overhead, as they merely log
information before calling glibc’s implementations.
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It is also necessary to identify the application that is currently active as
well as the start of its execution to enable the learning module to separately
learn characteristics of different applications. Thus, every trace collected
is tagged with its identifying job_id. In cloud environments, tenant VMs
have unique identifiers corresponding to the application or higher-level user
subscription. (Analysis of production workloads in past work reveals that a
subscription typically maps to a single application [125]). Hence, the needed
information is readily available in production environments.

The data collector logs network flows during the whole execution of a job.
A flow is identified by its source-destination 4-tuple, and the constraint that
if it comprises multiple send calls, the time interval between successive sends
must not exceed a flow gap threshold. The data collector thus tracks, for
each flow, its last send call’s timing. If a new send is issued, and the time
elapsed since the last call exceeds the flow gap, the data collector considers
this send the start of a new flow. This allows us to accommodate data center
applications that often establish long-running persistent connections, and
reuse them to avoid transport-layer overheads [11].

The data collector sends the collected traces to the learning module for
model training. This is a small amount of data batched over time. It also
needs to provide inputs to the inference module. When the data collector
identifies a new flow, it sends a set of input features to the inference module,
to enable flow size estimation.

Packet tagging module: We implemented the packet tagging module as
a Linux kernel module that contains a Netfilter. (Netfilter is a low-level
packet filtering and manipulation mechanism available for Linux.) For our
experiments, we implemented a simple pFabric-style packet tagger, which
tags every packet with the remaining amount of data in its flow, based on the
inferred flow size and bytes sent. For mechanisms like pHost and FastPass,
which implement their own network message protocols, we would need to
integrate such tagging in their implementations.

The packet tagging module needs a size estimate for a new flow as soon as
possible. There are two possibilities: (a) block on inference, holding packets
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until they can be tagged; and (b) operate in a non-blocking fashion, but
tag packets with a suitable default estimate until an inference is available.
The choice between these modes of operation will depend on the scheduling
application and inference latency. For instance, for pFabric, non-blocking
operation necessitates tagging based on a zero flow size until inference is
available — this ensures that later packets will not be prioritized over earlier
packets (and cause in-network reordering and transport problems).

In any case, to maximize Flux’s usefulness, inference and communication
with the inference module must minimize delay.

The packet tagging module also tracks prediction errors for all flows when
they finish, and periodically reports them to the learning module. The
measured errors allow the learning module to decide if / when to retrain its
model. We use simple error measures, like mean square, absolute error, and
coefficient of determination (R2).

Learning & inference modules: The learning module uses training data
received from the data collector to build a model for predicting flow sizes for
each job. Based on our conclusions in §5.2, we train a GBDT model with 50
trees. For receiving and processing traces from 1000 machines, we estimate
this to consume 40 Mbps data and 24 CPU cores assuming an average flow
arrival rate of 1000 flows per second per machine. The learning module also
receives error data from the packet tagger, and based on this data, decides
whether to update or retrain the inference module, in a manner configurable
by the operator.

The most latency-critical operation in Flux is inference. Based on our
comparison on the use of inference for the current flow and the next flow in
§5.2.3, we implement inference for the current flow. This necessitates that
inference take as little time as possible to provide timely information for
packet tagging.

Although the GBDT implementation provided by the XGBoost library [127]
has very good performance, it is optimized for batch execution. With data
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Number of trees 20 50 100 500

Lines of C code 2k 7k 16k 82k

CPU overhead 0.1% 0.4% 0.6% 4.3%

Model size (KB) 147 292 531 1721

Table 5.3: Inference overhead for different mode sizes.

center round-trip times on the order of 10 µs, our objective is to achieve
inference in a fraction of this time.

To efficiently implement GBDT, we use treelite [128], which takes an
XGBoost model as input, and transforms it into a single C function, which is
a long sequence of simple if-else statements. The length of the generated C
function depends on the number of trees in the XGBoost model, and their
maximum depth. Table 5.3 shows the size of functions generated for models
with 20, 50, 100, and 500 trees in terms of thousands of lines of C code.
This treelite-based approach incurs a minor slowdown when the model is
updated, but it improves inference performance by an order of magnitude
in comparison to the original library. This approach enables us to make
inferences in 5 µs in the typical case.

While low latency is crucial for predictions, we must also not incur large
compute overheads for inference. Recall that inference is run independently
at hosts. If the average flow inter-arrival time is 1 ms at a host (i.e., 1000
new flows per second starting at this host), this is the average frequency at
which we make inferences. The resulting average CPU overhead is shown in
Table 5.3 as percentage of a single core. Our choice of 50 trees, imposes little
CPU overhead (0.4%).

However, there are many other aspects of the cloud environment that can
influence the inference latency, as we show next.
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5.6 Deployment environment

There are a variety of ways in which Flux may be embedded into the data
center environment, each of which treads the trade-off between flexibility and
performance. We shall explore where Flux operates in the application-kernel
interface, first in a controlled environment where we can arbitrarily modify
the operating system and the application interface to it (§5.6.1); next, if
Flux’s inference could be implemented in hardware to improve its efficiency
(§5.6.2); and finally, how Flux may be used in virtualized or containerized
environments with and without hardware offload (§5.6.3).

Without loss of generality, in the following, we only consider the pFabric
use case, where we need to tag packets with the remaining flow size. For
pHost, FastPass, and other use cases, we expect only minor changes to be
necessary. We pick this use case as it involves tagging individual packets, the
finest granularity of operation.

5.6.1 Where does Flux operate?

The data collection module must have visibility of I/O calls from the applica-
tion. Hence, it must be implemented as either a library that intercepts these
calls (as described in §5.5), or within the kernel itself. Likewise, the packet
tagger must be implemented in the kernel to be able to manipulate packets.
The learning module is not on the data path, and may be implemented
essentially anywhere, even on a separate machine. The key decision to be
made, is: where should we implement the inference module? We explore three
possibilities, as outlined in Fig. 5.8.

As a separate process: In this mode of operation, shown in Fig. 5.8(a),
Flux’s inference module is a standalone process, and receives requests from
the syscall interceptor to serve prediction requests whenever a new flow starts.
This approach provides high flexibility: deploying a new prediction model or
changing an existing one is trivial. Since every model is a single C function, it
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Fig. 5.9: Inference latency with a 50 tree GBDT model implemented in a library
vs. in a process

can be compiled to a shared library which is loaded by the inference module
process dynamically.

When an application issues a send, the data collection module (system call
wrapper) records information about the current flow, and sends it to the the
inference process, which will send the prediction to the packet tagger. In this
case, the prediction path is much longer than the data path, and packets will
arrive for tagging before the prediction is available. How much latency would
operating in a blocking fashion, waiting for inference, incur?

Fig. 5.9 shows the prediction latency of this approach. The latency is
measured across 1000 prediction requests end-to-end, i.e., as the time dif-
ference between the arrival of the first packet at the packet tagger and the
time when the corresponding prediction arrives at the tagger. The median
(95th percentile) latency is 67.4µs (720µs) – inevitably, running the inference
module as a separate process produces significant latency variation, due to
operating system scheduling, context switches, etc.

As an interposed library: To reduce the inter-process communication
overhead, the inference module could run in the same library as the data
collection module. In this implementation, the send is intercepted and then
issued to the kernel as soon as the inference finishes. The predicted flow size
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Fig. 5.10: Inference latency as a function of model complexity for GBDT in
terms of number of trees in-kernel on a CPU.

is also conveyed to the kernel, where the packet tagger tags packets with this
information.

Merging the inference and data collection modules avoids inter-process
communication, but this optimization comes at a cost: the system call and
the inference have to be executed sequentially, in the same thread, before
returning to the application. (Multi-threading in this context could interfere
with the logic of the application; in particular, applications which track
the number of threads they are using may observe this extra thread.) The
application perceives this process as a long system call.

With this approach, one Netlink communication between the kernel and
the user space library still remains, which slows down the prediction delivery
to the Netfilter. The median latency for inference (measured in the same way
as above) is 4.97µs, and the 95th percentile is 16.7µs.

As a kernel module: To eliminate communication overhead, all components
except the learning module can be implemented in the kernel space as a single
module. This approach provides substantial performance benefits. When an
application issues a system call, it is intercepted by the kernel module that
runs the inference if a new flow is detected. The prediction is then forwarded
to the Netfilter using shared kernel memory. This approach has the least
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overhead, but it comes at a cost: different applications may need different
inference models, and for each new application, a new inference model must
be inserted in the kernel. This is likely to be a difficult proposition.

The latency in this approach comprises entirely of the execution of the
inference function. Depending on the size of the model, computational over-
head is shown in Fig. 5.10. For the 50-tree model that provides sufficient
accuracy on our traces, the average latency is 4.3µs.

5.6.2 Hardware implementation

We investigate if offloading inference to specialized hardware could improve
latency. While such logic could be built into NIC hardware, the FPGAs
already in use in some data centers [15] provide an avenue for experimenting
with this approach.

An FPGA is a reconfigurable chip with tens of thousands of distributed
generic logic cells and hundreds of small memory blocks (few kilo bytes)
distributed between logic cells. These distributed logic and memory resources
allow us to create tens of custom circuits, each of which has its own low-
latency local memory and can operate on either same or different data in
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parallel. For our decision-tree based inference model, we extend the FPGA
implementation from Owaida et al. [129].

This FPGA implementation creates 32 custom circuits each, each of which
is capable of processing, in parallel, up to 8 trees of depth up to 10. This
effectively provides random access with a fixed latency and bandwidth.
Another useful feature of the custom circuits is their programmability with
new decision tree models at runtime without the need to change the FPGA
implementation.

The FPGA thus provides predictable and deterministic latency. The custom
circuits take the same amount of time to perform inference on a tree regardless
of the traversed path from the root node to the leaf node. In addition, on
FPGAs available to us, this implementation can run up to 256 trees 10-level
deep in parallel. As a result, tree ensembles with 256 of fewer trees experience
the same latency. The FPGA latency grows linearly with the increase in tree
depth or with the number of trees over 256.

Fig. 5.10 and 5.11 compare the latency of inference across different model
sizes on a CPU and using an FPGA. The mean latency incurred for the
model with 50 trees is 4.3µs for the CPU implementation, and 1.23µs using
the FPGA. In each case, this includes the end-to-end time elapsed from when
a new flow’s packet arrives in the kernel to when it has the result for packet
tagging. The worst-case latency is bounded by 53µs on the CPU, and 1.25µs
on the FPGA. (Note the log scale in Fig. 5.10.)

Thus, with flow completion times being at least of the order of a few tens
of microseconds, the inference latency can be made negligible in comparison.

5.6.3 More complex environments

So far we discussed a simple, controlled environment, where we have full
access to every part of the system, but in practice that is not always the case,
with virtualization and network stack offload.
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Virtualization: The application may run in a virtualized environment in
a guest OS or inside a container. In these settings, Flux cannot modify the
guest or the container. The container setting is easier, and similar to a non-
virtualized environment. For virtualization using a guest OS, Flux needs to
be interposed in the guest-hypervisor interface. This does not change much in
terms of what we can expect in terms of accuracy and performance, because
ultimately, the guest is like an “application” running on the host hypervisor,
and the network interface is similar at this level, except in cases where some
networking functionality is additionally offloaded to hardware.

Hardware offload: In some cases, part of the network stack may be imple-
mented in hardware, or virtual machines may interact directly with hardware,
such as with hypervisor bypass using SR-IOV [130]. Nevertheless, these en-
vironments still must expose a similar send, rcv API to underlying layers,
which Flux can intercept. However, implementation in these settings may
necessitate Flux being part of a smart NIC. This is fundamental to any
method of using such packet tagging for network scheduling, because the
hypervisor (with bypass) may not have the ability to tag packets at all.

RDMA stacks: RDMA has a significantly different API than TCP. However,
even for RDMA networking stacks, the API exposes similar information about
sent and received data, which Flux can exploit.

5.7 Flux limitations

It should be clear that the learning approach is not a panacea. There are
several scenarios where it falls short. First and foremost, the prediction
context should be clear, i.e., the learning module has to identify the program
that is responsible for sending a flow and monitor all features of interest for
that flow, as described in §5.2.2. For Spark, the prediction context assumes
knowing start time of a job as well as its ID. This is not unreasonable, as
noted in §5.5.2.
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However, for Web servers, we would have to tie disk and memory reads
to particular requests. To demonstrate the effect of missing context, we run
Apache Tomcat, serving concurrent clients, so that it is not obvious how to
match HTTP requests with corresponding disk reads and responses. In this
case, disk reads become almost useless as an indicator, and we can only rely
on system calls. The prediction accuracy can be made arbitrarily bad by
tweaking the experiment parameters, so we omit a concrete accuracy number.

One possibility for obtaining such context is to apply vertical context
injection [131], which is deployed in Google’s data centers; it tags system calls
with application information for easier monitoring and debugging. Further, for
the execution of one-shot jobs without repetitive internal structure, there is
clearly no learning potential. Likewise, for jobs where large, non-deterministic
data volumes are generated (e.g., computationally) for transmission, and
there is little repetition across executions, it is unlikely that this approach
can succeed.

Thus, for many workloads of practical interest, despite our best efforts,
this approach will also be limited.

5.8 Summary

For a wide set of cloud applications, machine learning techniques are a
powerful tool for obtaining workload specifications in advance. Moreover,
we show that those specifications are accurate and can be obtained with
low latency and minimal performance overhead. Further, we use advance
workload specifications to enable sophisticated network scheduling systems
and demonstrate significant performance improvements in terms of reducing
flow completion time.

To motivate cloud providers to deploy specification-dependent control
systems on top of their infrastructure, we next focus on providing a set of
guarantees and constraints that must be met before these sistems become
available in practical deployments.



6
WORKLOAD SPEC IF ICAT ION IN
PRACTICE

In the example of building Data Center Interconnect (Chapter 3), we demon-
strated how to collect and use coarse-grained workload specifications about
past behavior of cloud workloads. However, telling something about the
future is significantly more difficult (§5). Although advance knowledge is
very valuable and can bring an order of magnitude performance improvement
(§5.4), obtaining that knowledge is challenging, and in some cases even fun-
damentally impossible (§5.7). On the other hand, we also demonstrated that
having partial knowledge can provide significant improvement in efficiency,
and in certain situation, that knowledge can be easily obtained using simple
methods and heuristics(§4.3, §5.4).

In reality, cloud providers must operate with partially-known workload
specifications. Some of those specifications are known, others are not, while
there is also a subset of them that are inaccurate due to (ML) methods
used for obtaining them. Thus, cloud scheduling and control algorithms
must be robust and designed to support each of these classes of workload
specifications.

It is important to note that cloud providers and cloud tenants are able to
change the amount of knowledge about workload specifications. By deploying
proposed techniques and methods in various cloud-managed systems, cloud
providers are able to increase the amount of workload specification available.
Also, cloud tenants can help by specifying and communicating their explicit
workload specifications directly to the providers, e.g., declare their flow size
before the flow starts, which would be simple for applications like file transfer.
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Then, the question is how to motivate cloud tenants and cloud providers to
invest substantial effort and increase the amount of workload specifications?.
Obviously, the effort must be justified by achieving higher efficiency or at
least providing a strict guarantee that the performance will not deteriorate
with more knowledge added to the system.

Although it sounds intuitive, more knowledge about a particular workload
does not always lead to better performance. In fact, adding knowledge about
a particular workload in some cases can deteriorate the performance of that
very workload as well as of the system as a whole. Thus, we demonstrate
that if one is not careful when designing network scheduling and control
algorithms, adding knowledge about system’s behavior can degrade the
performance. In this chapter we discuss algorithms that formally guarantee
that more knowledge leads to nondecreasing performance, but also indentify
systems that do not have this important property. Furthermore, we discuss
other properties that current and future systems need to provide in order to
efficiently leverage workload specifications and motivate users to cooperate
in obtaining more knowledge about cloud workloads.

Outline Sections 6.1 and 6.2 discuss the problem of adding more knowledge
about workload specifications in the context of flow and coflow scheduling
respectively. Section 6.3 explores how to provide a formally provable guaran-
tee that performance increases when more knowledge is added to the system.
Then, Section 6.4 discusses challenges in assuring strict performance guaran-
tees in practise. Finally, Section 6.5 exposes limitations of our approach and
discusses future steps that need to be taken in order to make the usage of
workload specifications practical in the cloud environment.

6.1 Known vs.unknown in flow scheduling

In this section we explore what happens to the system when we change the
amount of knowledge about workloads in that system. We demonstrate the
effects of such change on the example of flow and coflow scheduling.
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Fig. 6.1: As more flow sizes are known, performance improves.

In the case of flow scheduling, we combine two techniques that are known
to have great performance for known and unknown traffic. We schedule
known flows using the shortest remaining first policy, while for unknown
traffic we use flow Aging (§4.5). This is not a new approach. SOAP [132] and
Karuna [133] have explored similar scheduling techniques in settings with a
fixed proportion of flows of known and unknown sizes. For instance, Karuna
combines pFabric’s shortest remaining first (SRF) approach for known flows
with Aging1 for unknown flows. We refer to this policy as SRF-age, but
consider a version with infinitely many priorities, and explore what what
happens when the ratio of know and unknown traffic changes.

Knowing x% of all flows: If x = 0, SRF-age devolves to Aging, and if x =

100, it becomes Perfect (pFabric with full knowledge). We define performance
with an arbitrary x% of flows known as the following normalization, where
FCTP is mean FCT with policy P :

Perf(x) =
FCTSRF −age(x) − FCTAging

FCTP erfect − FCTAging

Fig. 6.1 shows the results on this normalized metric for a sample of
workloads from §5.4. As more flow sizes become known, performance improves
as we expected.

1 We are simplifying here; Karuna actually uses a multi-level feedback queue, with queue
thresholds set based on the flow size distribution.
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Fig. 6.2: As more flow sizes are known, performance generally improves but
for Sincronia, as larger and larger flows become known, performance
sometimes degrades.

Knowing all flows of size up to x bytes: Given that some approaches,
like using the initial system call, are more effective at estimating smaller
flows, it is worth asking how much benefit knowledge of small flows gives. To
evaluate this, we modify SRF-age as follows: We assign priorities to known
flows following standard SRF, but for flows larger than x, we use max(age,x).
This reflects our confidence that any unknown flow is larger than x bytes.

Fig. 6.1(b) shows that just knowing small flows will not improve perfor-
mance drastically in terms of mean flow completion time, because they finish
near the highest priority even in case of zero knowledge. However, their per-
formance can improve if other, larger flows are known, and do not compete
with small flows at the same high priority.

6.2 Known vs.unknown in coflow scheduling

Using Sincronia, a state of the art coflow scheduler (§5.3), we also explore
the effects of having partial knowledge on coflow scheduling. We generate
coflows in the same manner as in §5.4. We run Sincronia offline with 1000
coflows. For known traffic we rely on Sincronia’s specific scheduling approach
that assumes perfect knowledge. On the other hand, for unknown flows we
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Fig. 6.3: In this scenario, Sinc-mean scheduling policy leads to priority inversion
and performance degradation when knowledge about certain flows is
added to the system.

had to assume that they are all of the mean flow size for the whole trace,
due to the lack of a known or intuitive translation of Aging. We refer to this
policy as Sinc-mean.

We normalize performance with partial knowledge in the same manner as
in the previous section in the case of flow scheduling, except using coflow
completion times (CCT). The results with x% of flow sizes known and all
flows smaller than x bytes known are shown in Fig. 6.2(a) and Fig. 6.2(b)
respectively.

In some cases, knowing large fractions of flows does not improve CCT
substantially. For instance, for the PageRank workload, knowing 70% of
flows still gives more than 60% worse results than with perfect knowledge
(Fig. 6.2(a)). This is due to unknown flows within a coflow acting like
stragglers.

Fig. 6.2(b), oddly, indicates that sometimes adding knowledge decreases
performance. We explain this with an example scenario, following a brief
(simplified) overview of Sincronia. Sincronia finds a bottleneck port, i.e., one
with the largest number of bytes accumulative across flows; and then assigns
the lowest priority to the largest coflow on that link. Flows within a coflow
share the same priority.
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Now consider a scenario with two coflows, with all their flows going from
the same ingress port to different egress ports as shown in Fig. 6.3. Coflow c1
contains only one flow with 7 packets, and coflow c2 contains two flows of 1
packet each. The mean flow size is thus 3 packets. Regardless of which flows
are un/known, with Sinc-mean, the ingress port would correctly be identified
as the bottleneck. If all flows are unknown, Sinc-mean would consider all of
them to be of the size 3. Sinc-mean would give c1 higher priority, because
its total estimated coflow size is 3 (compared to 6 for c2), and, thus, finish
c1 first, within 7 time units. Now instead, say we had disclosed the size of
c1’s single constituent flow. This leads Sinc-mean to detect c1 as the larger
coflow (with size 7 for c1 vs. an estimated 6 for c2) and give higher priority
to c2. In this case, c1 finishes after c2 with a coflow completion time of 9
time units. Thus, for c1, making its size known results in worse performance
under Sinc-mean.

6.3 Guaranteed performance improvement

Ideally, we would like the assurance that investing in learning about more
flows only improves performance. Otherwise, there are no incentives for data
center operators and/or users to change their applications and expose flow
size information or to deploy machine learning methods to estimate it.

This property clearly does not hold for Sinc-mean. Also, it is yet unclear how
Aging could be incorporated into Sincronia, and whether a partial-knowledge
variant can be developed that does not have the quirk of (sometimes) dete-
riorating when given additional knowledge. However, for the much simpler
pFabric/SRF in the context of flow scheduling, we can prove a positive result
in this direction, showing that for SRF-age, making a certain flow’s size
known can never deteriorate its performance, at least when interpreted in a
worst-case manner.

To demonstrate this important propery of SRF-age, we used a simplified
network model that assumes that all flows go through one link with unlimited



6.3 guaranteed performance improvement 119

output queuing. This output buffer queues packets in flow priority order.
This implies that across different flows, packets leave the queue in priority
order, but within flow packets leave in the same order as they arrive. At every
timestep, either a packet leaves the queue, or a new flow arrives. When flows
arrive, all their packets are immediately added to this priority queue in their
respective positions, with priority ties being broken randomly. To tackle this
randomness, we define worst-case scheduling for a particular flow fx as the
schedule where any and all ties for fx’s packets break against fx.

For some flows, their flow sizes are known, and for others, they are not. For
flows with unknown sizes, each packet uses the flow’s age so far as its priority.
The first packet of such a flow has the priority set to zero (highest), with
successive packets seeing increments in priority value (i.e., decreasing priority
with more packets sent). (For brevity, we omit the distinction between packets
and bytes and assume all packets are the same size.) In line with SRF, for
known flows, the priority value for their last packet is zero (highest). If the
size of a flow f is known, we denote it with fk; otherwise with fu. We define
priorities such that if P (p) and P (q) are the priorities of packets p and q,
then P (p) > P (q) implies p has higher priority, and is scheduled before q.

Theorem 6.3.1. All else fixed, with SRF-age, learning the flow size of a
particular flow fx cannot deteriorate its worst-case completion time, i.e.,
FCT (fk

x ) ≤ FCT (fu
x ).

Proof. To prove the result, we shall show that every packet of any other flow
that is scheduled before the end of fk

x would have also been scheduled before
the end of fu

x , assuming worst-case scheduling for either. It is easy to see
that this would imply that the FCT for fk

x in a worst-case schedule cannot
be worse than the FCT of fu

x .

Suppose a packet r of some other flow is scheduled before a packet pk
x in

fk
x , given worst-case scheduling for fk

x . This scheduling implies r has priority
higher than or equal to pk

x, i.e., P (r) ≥ P (pk
x).
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Now, say the last packet of fu
x is lux. Notice that this last packet of fu

x

must have priority lower than or equal to all packets of fk
x , including pk

x, i.e.,
P (lux) ≤ P (pk

x). This follows from the definition of SRF-age. If the size of a
flow f is |f | packets, then the last packet of fu (per aging) has priority value
|f | − 1. The nth packet of fk has priority value |f | − n.

Putting the above two inequalities together yields P (r) ≥ P (lux). Thus, r
would also be scheduled before lux (which is the end of fu

x ), at least in the
worst-case schedule for fu

x .

A few remarks about this result are in order:

• The theorem and the proof specify worst-case tie-breaking for the
flow under consideration. It is easy to produce counterexamples to the
theorem statement without the worst-case addendum.

• The definition of SRF-age is central to the result, and it is easy to
produce counterexamples for an analogous statement for SRF-mean.

• For systems with a limited number of priority queues, like Karuna or
PIAS, the theorem still holds if both known and unknown flows share
the same priority thresholds.

• The result can appear counter-intuitive; after all, large unknown flows
benefit from high priority in the beginning, which they wouldn’t if
they were known. While this is true, unknown flows keep slowing down
with aging, while known flows keep speeding up with SRF. The proof
formalizes this idea.

• Our model, like past work, assumes that scheduling does not change
packet inputs to the queue. This is not true for TCP flows entering a
finite queue.

Mean completion time across all co/flows: Although we have shown
that SRF-age cannot deteriorate the performance of a particular flow when its
size is made known, it is easy to produce examples where it hurts mean flow
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Fig. 6.4: For the TensorFlow workload, with TCP, unknown flows finish faster
under SRF-age.

completion time across the set of all flows2. While our empirical results show
improved mean FCT with SRF-age (and an overall trend for improvement
even for mean CCT with Sinc-mean), a fuller analysis of this issue is left to
future work.

6.4 Toward practical performance guarantees

Although the theorem from the previous section provides a strict performance
guarantee, it does not hold (completely) in practice. Namely, the theorem
works only on a simplified network model. For some practical scenarios
that include the network software stack, congestion control algorithms, or a
multihop topology, the theorem might not hold.

To illustrate the impact of realistic network environment in practice, we
take a closer look at the TensorFlow trace in Fig. 6.1(a), separating out
the FCTs for known and unknown flows. As Fig. 6.4 shows, unknown flows
finish somewhat faster. This apparent deviation from our theorem’s result
stems from our simple model which ignores TCP dynamics, assuming instead

2 This is also true of Sinc-mean for mean coflow completion time.
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that all packets of a flow are available for scheduling at its arrival time.
The TensorFlow workload comprises nearly 90% flows of sizes smaller than
100 KB. For unknown flows of this type, Aging results in higher priority
in the beginning, allowing TCP’s exponential slow-start to grow such flows
faster than flows with known sizes.

Incorporating TCP dynamics into our model to potentially bound the
disadvantage that known flows can suffer will require substantial additional
effort, which is left to future work. While this discrepancy and its impact on
scheduling results should be examined in greater detail, this does not take
away from our results on incremental benefits from having greater knowledge
with SRF-age scheduling overall.

6.5 Limitations

Having a performance guarantee like the one we discussed in the previous
section is necessary to motivate both users and cloud operators to start
investing time and effort into obtaining workload specifications. However, to
make some of the techniques for performance improvement practical in today’s
cloud, operators need to design and deploy additional systems and adapt
existing ones to better support the usage of cloud workload specifications.

Workload Specification API The most accurate and straightforward ap-
proach cloud providers can take to obtain workload specifications is to let
users communicate those specifications explicitly. For that, besides gurantee-
ing better performance to users who share their workload specifications, cloud
operators need to build an efficient API that will be expressive enough to cap-
ture key properties of various cloud workloads. Creating such an API would
require designing a new set of concepts for describing workload specifications
and defining an expressive language together with a communication protocol.
Finally, using the API must assure the minimal performance overhead to
applications that expose their specifications thorugh it.
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Obtaining workload specifications automatically Instead of relying on
users to invest the effort and use the API explicitly, cloud providers could
deploy systems like Flux that obtain worklaod specifications automaticaly. In
some cases, these systems do not have to be as sophistcated as Flux. Often,
workload specifications are already known to the application framework, and
can be easily obtained from there. For instance, popular data processing
frameworks like Hadoop [134] or Spark [135] already know the size of data they
are going to exchange in the shuffle phase, so if cloud providers implement
only modest modifications to these two frameworks, the flow size information
could be exposed automatically [106].

Protection against cheating Optimizations based on workload specifica-
tions, especially user-provided specifications, are vulnerable to intentionally
providing misinformation to achieve higher performance. For instance, in
the case of flow size scheduling and the shortest remaining time first policy,
users can declare all their flows to be very short and achieve the highest
flow priority throughout the entire flow execution. To prevent that, cloud
operators need to build control mechanisms to monitor the correctness of
workload specifications and create a penalty system for users who try to
cheat.

Security and privacy concerns Disclosing detailed information about
the behavior of a cloud workload poses a security threat for that workload.
Knowing how much data a particular program will exchange, when, and
with who, can allow attackers to exploit that information and disrupt the
regular operation of that program, for instance, by launching a DDoS attack.
On top of that, providing too much visibility into the application poses a
privacy challenge. Detailed workload specifications can be used to identify
and track applications, together with users who use them, or even infer what
kind of data a particular application is processing. Thus, cloud providers
must handle workload specifications with great care and provide the same
security guarantees as for storing other mission-critical data.

Robustness to imprecise workload specifications As we discussed, it
is impossible to provide perfect workload specifications in certain situations.
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Due to various noise sources like randomness in the workload or using an im-
precise method for obtaining the specification, cloud providers must provide
mechanisms that can handle errors in workload specifications without nega-
tively impacting the system performance. In the example of flow scheduling
(§5.4), we demonstrated that systems like pFabric and FastPass successfully
handle relatively small errors in flow size estimates. However, systems like
Iris, where a decision about network reconfiguration may be made based
on those predictions, can have more significant consequences for the overall
system performance due to noise in traffic pattern predictions. Thus, cloud
providers must protect users from imprecise workload specifications or at
least bound their negative influence.

Cost model adjustments In some situations, cloud users cannot see any
performance improvement by providing their workload specifications. For
instance, in the case of Iris, the specification allows providers only to make
cheaper infrastructure with the same performance as specification agnostic
systems. In those cases, cloud providers must change their billing model and
transfer some of the savings they make directly to the clients who enabled
the savings in the first place by providing detailed workload specifications.

6.6 Summary

In this section, we demonstrated that the ability to obtain workload specifica-
tions is just one step towards improving performance. The equally important
aspect of leveraging those specifications is how to motivate both cloud
providers and cloud users to start working together on their common goal –
making the cloud infrastructure as efficient as possible.

We showed how cloud providers could guarantee performance improve-
ments to those users who put effort into sharing their workload specifications
(§6.3). However, to unlock the full potential of using workload specifications
in the cloud, there is more to be done. Cloud providers need to build addi-
tional infrastructure to tolerate imprecise and incorrect specifications, respect
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privacy, have provable performance guarantees and bounds, and incentivize
users to collaborate in the process by providing higher performance and lower
cost of cloud resources.





7
CONCLUS ION

7.1 Summary

Having workload specifications that describe the communication patterns
and behavior of modern workloads is essential for deploying sophisticated
control and scheduling techniques that maximize the efficiency of today’s
cloud infrastructure.

Workload specifications can describe various aspects of cloud programs.
Certain specifications capture coarse-grained insights about the long history
of execution of the entire cloud infrastructure. In contrast, others can be
much more detailed and describe the fine-grained behavior of a particular
application in the future.

Historical insights about cloud workloads are essential for designing physical
network infrastructure that are relatively static and must support a wide
variety of cloud applications. We demonstrate the power of historical workload
specifications by proposing a new Data Center Interconnect architecture, Iris,
that achieves an order of magnitude improvement in terms of infrastructure
cost and flexibility thanks to the insights about the traffic stability across
data centers.

On the other hand, for sophisticated network control and scheduling, more
valuable are fine-grained specifications that describe the future behavior of
individual applications. We explore this part of the workload specification
space by proposing a system named Flux that automatically obtains knowl-
edge about future events in the cloud system. Flux estimates the size of
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individual network flows and utilizes it for enabling clairvoyant schedulers
that provide an order of magnitude improvement in terms of flow comple-
tion time and network queue occupancy compared to the systems that are
deployed in the cloud today. Besides that, Flux demonstrates how to obtain
those advance specifications in a timely manner with low latency, which is
critical for providing the desired performance benefits.

However, the ability to obtain workload specifications does not make them
immediately useful. As we have shown, it is also important to motivate cloud
users to collaborate on creating and exposing workload specifications. For
that, it is critical that cloud operators provide strict performance guarantees
for those users that expose information about their workloads. To further
facilitate the specification exchange, cloud providers should focus on building
new interfaces and frameworks that allow users to quickly and securely
describe their workloads. Also, the providers should change the billing model
to stimulate the users who invest additional effort into obtaining workload
specifications.

Leveraging workload specifications is necessary for maximizing the perfor-
mance of modern hardware. Thus, cloud users and providers have to work
together toward better defining and understanding workload specifications
and utilizing them to create a new generation of workload-specification-based
cloud infrastructure.

Chapter 1 introduced the problem of obtaining and using workload specifi-
cations, defined the workload specification space, discussed the motivation for
deploying specification-based algorithms and systems in the modern cloud,
and summarized the major contributions of this thesis.

In Chapter 2, we started exploring the workload specification space from
the side of coarse-grained historical specifications. We did that in the context
of designing and deploying regional cloud networks, which are one of the
most expensive components of the modern cloud network infrastructure.
First, we ran an analysis of real cloud regions, their physical equipment, and
fiber maps, which resulted in a set of constraints that must be met when
building a regional network. We also demonstrated the flexibility and latency
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benefits of distributed regional networks over today’s centralized design. As
it is implemented today, we show that distributed design comes at a cost so
high that it is prohibitive for modern cloud providers to deploy it. Thus, we
leveraged the insight based on historical workload specifications about traffic
demand and stability to propose a new regional network architecture that
minimizes the infrastructure cost and reduces the network complexity.

Chapter 3 introduced Iris, a new all-optical regional network design that
reduces the cost and complexity of data center interconnect by order of
magnitude, compared to today’s standard electrical implementations. To
minimize the need for expensive transceivers in the context of DCI, Iris
relies on two major insights. First, there is plenty of relatively cheap fiber
in metropolitan areas. Since that fiber has a substantially lower cost than
the transceivers necessary to saturate that fiber, Iris leverages optical fiber
switching to favor having small fiber overhead for completely removing
the need for in-network transceivers. Second, since optical fiber-switching
infrastructure requires reconfiguration under changes in traffic demand, Iris
minimizes the negative performance impact of network reconfiguration by
leveraging the insights about traffic stability between data center pairs in a
cloud region.

Chapter 4 moves the focus from one extreme in the workload specification
space to the other. Instead of looking at coarse-grained historical information
about cloud workloads, here we explored the potential of automatically obtain-
ing fine-grained details about the future behavior of particular applications.
More precisely, we looked at the problem of obtaining flow size information
in advance. Flow size information is a critical input to many scheduling
techniques that provide an order of magnitude performance improvements
compared to flow-size-agnostic approaches. This chapter explored simple
methods and heuristics for exposing flow size information in a realistic cloud
environment.

Chapter 5 introduced Flux, a system that leverages machine learning for
obtaining flow size information in advance. Flux tries to identify dependencies
between resource utilization, various system-level parameters, and past traffic,
to estimate the size of the next network flow. This chapter also explores
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the utility of these, sometimes imprecise, estimates for improving network
scheduling in the cloud. Although imperfect, those estimates can still achieve
1.1× to 11.1× performance improvement in terms of flow completion time
compared to methods used today that do not rely on advance knowledge.

Finally, Chapter 6 discussed current and future challenges of using vari-
ous workload specifications in practical cloud deployments. Obtaining and
leveraging workload specifications can require substantial effort from both
cloud users and cloud operators. Thus, it is critical to create systems and
algorithms that justify the effort and provide strict performance guarantees
and bounds, secure specification exchange, and develop expressive languages
and abstractions to help users better describe their programs’ behavior.

7.2 Research outlook

We made initial steps towards obtaining and leveraging workload specifica-
tions and characteristics to improve the efficiency of data centers and cloud
networks. However, as we discussed in §6.5, there are more research challenges
to be solved before cloud providers can use those specifications to operate
and manage their networks optimally.

On the other hand, workload specifications help improve infrastructure
efficiency beyond only cloud networks. More general knowledge about appli-
cation behavior help cloud operators to improve machine utilization, optimize
job scheduling decisions, reduce resource fragmentation, save power, and
enhance many other aspects of their entire infrastructure.

7.2.1 Future of general workload specifications

Understanding communication patterns and network behavior is only one
piece in the general workload specification puzzle. It is also important to ob-
tain knowledge about other components of cloud applications to improve the
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overall infrastructure efficiency. Previous work has shown that understanding
features like changes in CPU utilization, job execution time, memory require-
ments, or physical hardware preferences of individual applications, all have
significant impact on both workload and data center performance [136]–[138].
These detailed workload specifications about general application behavior
and resource requirements allow better scheduling and workload placement
decisions, minimize the interference between collocated programs that share
the same physical hardware, and improve resource utilization [113], [139],
[140].

Leveraging general workload specifications in practice has many challenges
in common with using network-related specifications discussed in this work.
Obtaining general specifications is usually difficult and requires serious effort
both from cloud tenants and application developers. For instance, estimating
job execution time or CPU utilization in advance has been shown to be
problematic at best [141], [142]. Thus, to justify the effort, systems that
leverage general job specifications must provide the same set of guarantees
described in §6.5 – strict performance improvement bounds, deal with inac-
curate specifications, and help users provide specifications and better define
their applications’ behavior. Many of the ideas presented in this thesis can
help in this direction and they are directly applicable to improving efficiency
of other resources in the cloud, e.g., our ML model with its low-latency
FPGA implementation can be used to predict other characteristics of cloud
workloads like future CPU and Memory requirements, and the scheduling
technique presented in §6.1 that mixes known and unknown workloads can
be adjusted to improve CPU scheduling and provide strict performance
guarantees.

In the long term, modern cloud environments need a logically centralized
workload specification repository that would collect both automatic and
user-defined specifications and make them available for various cloud control
and scheduling mechanisms. Initial steps have already been made in this
direction [125]. However, the major challenge in the future will be how to
combine multiple of these specifications, both automatically obtained and
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user-defined, to develop comprehensive insights into application needs and
improve efficiency across the entire cloud stack.

7.2.2 Integration with user-level metrics

From the perspective of improving infrastructure efficiency, the most impor-
tant workload specifications are related to the physical resource requirements
of cloud programs – how many CPU cycles a particular program needs, how
much network traffic will be generated, or what will be the peak memory
utilization of one program. Although cloud users may be motivated by per-
formance improvements or cost reductions to invest additional effort and
provide explicit resource specifications of their programs, this process is tiring
and not natural to them. Users care about metrics that are at a higher
level of abstraction and closer to their business problems – 99th percentile
request latency, maximum throughput, or achieving 99.99% availability of
their service.

Recent work showed progress in understanding and utilizing user-level
metrics that describe application goals [143]–[145]. So far, the focus of this
body of work was on finding a resource configuration that best fits the
needs of a particular application, e.g., correctly allocate CPU and memory
resources for a virtual machine. Although useful in some cases, high-level
application goals do not contain a sufficient amount of information to be used
in situations where fine-grained workload specifications are necessary, e.g.,
dynamic network reconfiguration or bandwidth reservation. The challenge for
future work will be to efficiently capture all user-level metrics and combine
them with automatically obtained fine-grained workload specifications to
improve the efficiency of the entire cloud infrastructure.
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A
APPENDIX

A.1 Physical layer experimental details

More details of the experiment reported in §3.7.2 are discussed here for
completeness. Four dual polarization (DP) 200 Gbit/s 16 quadrature am-
plitude modulation (QAM) optical signals are generated by commercially
available real-time coherent transceivers, Acacia AC200 and AC400, to pro-
duce 231 pseudo random bit sequences. They are spectrally shaped with
a root-raised cosine with a 0.2 roll-off factor and with 15% overhead. An
amplified spontaneous emission (ASE) source emulates dense wavelength
division multiplexed (DWDM) channels (“Channel emulation”), which are
then split and multiplexed with the signals in two separate single mode
fibers (SMFs) via two to emulate full C-band lines. It is worth pointing
out that at the wavelengths of the live signals no ASE was present by the
channel emulator since it was properly filtered by the . In the experiment
the signals wavelengths were tuned within the C-band with similar achieved
results. At the receiver side the optical signals under test are demultiplexed
and sent to coherent receivers [146] to be converted in the electrical domain.
The optical-to-electrical converted signals are fed to the application-specific
integrated circuit (ASIC)’s analogue to digital conversion for further process-
ing by the ASIC’s digital signal processing, which includes signal recovery,
polarization mode dispersion and chromatic dispersion compensation, before
SD-FEC decoding. Pre-FEC BER measurements are taken every 10 msec
and the received powers are kept within the range of the receiver’s optimal
performance.
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Insets of Fig. 3.7 show examples of typical constellation diagrams of the
tested signals in our experiments. The constellation diagrams of the tested
signals are shown once converted in the electrical domain at different points
in the system. They display the signals as a two-dimensional plane diagram
in the complex plane at symbol sampling instants. The angle of a point,
measured counter-clockwise from the horizontal axis, represents the phase
shift of the carrier wave from a reference phase, given by the local oscillator
in the coherent receiver. The distance of a point from the plane origin
represents a measure of the amplitude or power of the signal. As expected
for 16 QAM signals, 16 distinct symbols are visible for both polarizations,
x and y. The cloud associated to each symbol is caused by noise. Due to
transmission impairments, the constellation diagrams at the end of the system
are characterized by a higher degree of noise as compared to the ones before
transmission, but are within the range of acceptable received performance,
as confirmed by the BER measurements reported in Fig.3.8. Insets of Fig.3.7
further show spectral traces that cover the whole C-band before and after the
fiber spans. The traces show how Iris emulates missing channels to fill the
unused spectrum while at the same time keeping per-channel power roughly
constant so that no per-channel power management is required. These traces
are measured in the frequency/wavelength domain using an optical spectrum
analyzer.
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